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ABSTRACT

In the domain of causal inference with observational datasets, synthetic control (SC) has emerged as a
prominent tool. Traditionally, SC has been applied to aggregate-level datasets, such as those measured
at the city or state level. However, recent advancements have extended its application to more granular
datasets (e.g., individual-level), which comes with a greater number of observed units. This change
introduces the curse of dimensionality to the SC setup, making the model more challenging to learn.
Motivated by the idea that groups of individuals may exist where behavior aligns internally but
diverges between groups, we propose a novel approach to selecting an appropriate subset of donors
when constructing an SC instance. We provide theoretical guarantees on the improvements induced
by our method over existing approach, accompanied by empirical demonstration on synthetic datasets.
Our method almost always increases the performance, particularly in highly noisy settings.

Keywords synthetic control · causal inference · clustering

1 Introduction

Synthetic control (SC) has emerged in the econometrics community as a natural extension of the Difference-in-
Differences (D-in-D, Card and Krueger (1993)). By leveraging time-series data from both pre- and post-intervention
periods, SC evaluates the impact of an intervention on a target unit by constructing a synthetic counterfactual using a
weighted combination of donor units, rather than selecting the nearest neighbor as in D-in-D. Much of the practical
usage of SC has been with aggregate-level data, such as assessing the economic impact of government policies or
political events at the state or regional level (Abadie and Gardeazabal, 2003; Abadie et al., 2010, 2015; Kreif et al.,
2016).

Recently, there has been increasing attention to employing SC on disaggregate-level data, observed in contexts like
clinical trials with individual health records (Thorlund et al., 2020) and economic analyses using data with individual
incomes (Abadie and L’Hour, 2021). In disaggregate-level datasets, the number of observed donor units can increase
dramatically, easily exceeding the number of time-series measurements. Although more data typically means more
information, the dimension of the synthetic control weights is determined by the number of units in the donor data.
Hence, increased number of donors may introduce the curse of dimensionality, where learning happens in a high-
dimensional space with only a few time-series measurements.
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In light of this, we revisit the core motivation of synthetic control, which is to construct a similar counterpart to the
target unit. What if there is a group of donors that behaves most similarly to the given target unit? We hypothesize an
underlying group-based structure where the latent variables have a certain structural separation. Specifically, we focus
on the distribution of the right singular vectors in each unit, and suggest clustering the donor pool before learning SC
weights. We then analyze the impact of selecting a subgroup of donors, rather than the entire donor pool, within the SC
framework.

Our contribution is twofold. First, we introduce a novel approach to disaggregate-level SC to mitigate high noise
and dimensionality issues by incorporating a donor clustering step. Second, we provide a theoretical analysis of our
algorithm’s guarantees, based on the structural assumptions in the latent variable space. We also validate our approach
empirically on synthetic datasets, demonstrating the improved prediction accuracy achieved by our method.

Section 2 introduces the synthetic control family of methods and defines relevant notations. Based on this, we formalize
the problem setup and introduce structural assumptions in Section 3. Our main algorithm is introduced in Section 4,
with theoretical analyses in Section 4.2. Finally, Section 5 empirically evaluates the performance of our approach on
synthetic datasets.

2 Synthetic Control (SC) Methods

Before introducing SC methods, we introduce some key notation. Let Xi be the i-th row and Xi,t be the element in
the i-th row and the t-th column of X . Usually, a target unit index is 0 and the data is vector x0. A donor matrix
X ∈ Rn×T is formed with n donor units and T observations. Assuming an intervention at time T0 < T , X can be
split into pre-intervention portion X− ∈ Rn×T0 and post-intervention portion X+ ∈ Rn×T−T0 . Similarly for a vector,
x = [x−, x+]. We denote the i-th singular value of a matrix X by σi(X) and the i-th eigenvalue of a square matrix X
by λi(X). If needed, we denote the left and right singular vectors of a matrix X as ui(X) and vi(X), respectively.

Synthetic Control Family of Methods. Imagine that you are a coffee shop owner. You have T observations of daily
coffee consumption xi,t ∈ R for all customers (units) i ∈ V and for all time points t ∈ [T ]. At time T0 < T , you
decide to run a new promotion (intervention) on a subset of the customers (treated units) W ⊂ V , while keeping others
the same (control units, potential donors). Hence, for each treated unit i ∈W , we have a pre-intervention time series
x−
i ∈ RT0 and post-intervention time series x+

i ∈ RT−T0 . For control unit j ∈ V \W , we can use the same notation
but the post-intervention time series x+

j was not affected by the intervention.

Synthetic Control estimates the effect of an intervention on treated units in W by constructing the counterfactual for the
post-intervention period. It is important to note that SC constructs a separate model for each treated unit, allowing the
causal estimand to be calculated on a per-unit basis. The SC family of methods learns the relationship between a target
unit (i = 0 from W ) and donor units (j = 1, . . . , n from V \W ) using pre-intervention time series data. Assuming
this relationship remains stable over time t ∈ [T ], the counterfactual post-intervention time series for the target unit is
inferred using donor data from the post-intervention period. Algorithm 1 formally defines the synthetic control family
of methods.

Algorithm 1: Synthetic Control Family of Methods

Data: Target time series vector xi ∈ RT for each treated unit i ∈W . Donor data X ∈ Rn×T containing all control
units j ∈ V \W .
for i ∈W do

1. Learn f =M(X,x−
i )

2. Project m̂+
i = f(X+)

3. Infer the estimated causal effect of the intervention for target i is x+
i − m̂+

i
end for

In the first step of Algorithm 1,M learns weights f to represent the target unit as a linear combination of the donor
units. In the original work on synthetic control, Abadie and Gardeazabal (2003) use linear regression with a simplex
constraint on the weights (i.e., the regression coefficients should be non-negative and sum to one). They used data on
per capita GDP in n = 17 Spanish regions (aggregate level) to measure the effect of terrorism on Basque Country’s per
capita GDP. Later, more advanced variations of synthetic control have been proposed to deal with multiple treated units
(Dube and Zipperer, 2015; Abadie and L’Hour, 2021), to correct bias (Ben-Michael et al., 2021; Abadie and L’Hour,
2021), to remove simplex constraints (Doudchenko and Imbens, 2016; Amjad et al., 2018), to ensure differential privacy
(Rho et al., 2023), to incorporate matrix completion techniques (Athey et al., 2021; Amjad et al., 2019), and to consider
temporal order (Brodersen et al., 2015).
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In this paper, we will use Algorithm 2 as our learning methodM, which is based on the method proposed by Amjad
et al. (2018). It denoises the donor matrix by retaining only the top r singular values through hard singular value
thresholding (HSVT) (Cai et al., 2010; Chatterjee, 2015), followed by ordinary least squares to obtain the weight vector
f . This approach is known for its robustness to noisy data, making it well-suited to our objectives.

Algorithm 2: Synthetic Control Core AlgorithmM(X,x−; r)

Hyperparameter: the number of singular values to keep r
1. Perform SVD
X =

∑T
i=1 σiuiv

⊤
i , σi in decreasing order.

2. Denoise (HSVT) M̂ =
∑r
i=1 σiuiv

⊤
i .

3. Return SC weights
f̂ = argminf∈Rn ∥M̂−⊤f − x−∥ (SC weights)

An intuitive way to view SC is a linear regression vertically performed on the dataset. With the pre-intervention donor
matrix X− as a regressor and the pre-intervention target time series x−

0 as a regressand, the j-th element of the weight
f represents the importance of the j-th donor unit in explaining the target unit 0. Since a column of the matrix X−

becomes one sample for learning, we call this a vertical regression.

Another way to view SC is as a matrix completion problem with post-intervention target data as missing values. Athey
et al. (2021) formalizes SC as a matrix completion method by setting an objective function based on the Frobenius
norm of the difference between the latent and the observed matrix. The core modeling assumption of this approach is
that the matrix is approximately low-rank. This is achieved by assuming a Lipschitz-continuous latent variable model
with bounded latent variables (Candes and Plan, 2010; Candes and Recht, 2012; Nguyen et al., 2019).

SC on Disaggreagate-level Data When applying SC to disaggregate-level data, meeting these assumptions becomes
more challenging. For example, there might be a certain type of units (such as patients with a certain phenotype)
that can be well-approximated by a low-rank matrix, but not when mixed with other units in different types. When
the number of potential donors is small, it may be possible to hand-pick a suitable donor set based on background
knowledge, which usually is the case for aggregate-level datasets (Abadie and Gardeazabal, 2003; Abadie et al., 2015).

However, with disaggregate-level data, researchers must devise more data-driven approaches to select the appropriate
donor units for a given target. Abadie and L’Hour (2021) used a penalty term to keep the active units in the donor pool
small. Other works suggest using LASSO (Chernozhukov et al., 2021) or elastic net (Doudchenko and Imbens, 2016)
regularizers to achieve similar results. Still, these SC configurations operate in n-dimensional spaces, which is less
feasible when n is large.

3 Problem Setup

In this paper, we focus on applying SC to disaggregate-level data. Given the abundance of donor units, our objective is
to develop a pre-processing step for SC that selects the optimal set of donors for a given target unit. In the following
subsections, we present a detailed model tailored to this setting.

The assess the performance of SC methods, researchers often construct a placebo test Abadie and Gardeazabal (2003),
where SC is used to predict post-intervention data in the absence of an intervention, or equivalently, to predict the
post-intervention time series of a control unit using other control units as the donor pool. In these settings, since the
target is drawn from the same distribution as the donors, the estimated causal effect (from Algorithm 1) should be zero.
In the remainder of the paper, we focus on these placebo studies.

3.1 Model

Let x0 be the target unit and let X ∈ Rn×T be the donor data matrix, where each row xi is a T -length time-series
measurement. In light of disaggregate-level data, we assume n ≫ T (i.e., X is a tall matrix). We assume that the
true data generation model comes from a latent variable model, plus some observation noise. That is, X = M + E,
where Mi,t is the true (deterministic) signal with entries bounded −1 ≤Mi,t ≤ 1, and Ei,t is mean-zero noise with
finite variance, for all i ∈ {0, · · · , n} and t ∈ [T ]. Similarly, we assume the target x0 = m0 + ϵ0 with zero-mean
finite-variance noise ϵ0.

Consistent with the synthetic control literature, we assume the entries of M are generated by a latent variable model,
i.e., Mi,t = g(θi, ρt) where θi and ρt are finite-dimensional latent vectors (Ben-Michael et al., 2021; Arkhangelsky
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et al., 2021; Abadie, 2021; Amjad et al., 2018, 2019; Athey et al., 2021). Since we focus on placebo studies, we assume
this holds for the target unit as well: m0,t = g(θ0, ρt) ∀t ∈ [T ].1 We assume g is L-bilipschitz continuous, so that
cluster structure in the latent variables is recoverable by our algorithm (see Section 4.2.1). Then, M is known to be
well-approximated by a low-rank matrix (Chatterjee, 2015) with rank(M) = O(log T ) (Udell and Townsend, 2019).
We denote rank(M) = r and assume r < T . Finally, we assume that there exists a vector f∗ with ∥f∗∥ ≤ µ for some
µ > 0, such that M0,t = M⊤

1:n,tf
∗.

3.2 Existence of Subgroups

Our motivation comes from the idea that the donors may have some relevant groups or cluster structure, and the
target unit belongs to one of these clusters. We formalize this by assuming a centroid-based (specifically, k-means
based) separation structure on the row latent variables Θ = {θi : i ∈ [n]}. Let P = (Pj)j∈[k] be a k-partition of Θ
(i.e., P1 ⊔ ... ⊔ Pk = Θ), with induced centers {P j∈[k]} = { 1

|Pj |
∑
θ∈Pj

θ}j∈[k]. Then, we define the k-means cost

∆2
k(Θ;P ) =

∑n
i=1 minj∈[k] ∥θi − Pj∥2, and denote ∆2

k(Θ) = minP ′ ∆2
k(Θ;P ′) as the optimal cost. We assume the

following ϵ-separation condition on Θ from Ostrovsky et al. (2013): for some k and ϵ ∈ (0, 1):

∆k(Θ) ≤ ϵ∆k−1(Θ), (1)

which captures the idea that k clusters fit the data significantly better than k − 1 clusters (in the spirit of the “elbow
method" heuristic). For example, this condition would be satisfied if Θ were generated by a sufficiently separated
mixture of k distributions.

This modeling assumption on the existence of subgroups provides us with a formal setup to show the ability of our
algorithm to approximate the clusters in the latent variable space.

4 clusterSC Algorithm

In this section, we present clusterSC (Algorithm 4), which uses Algorithm 3 as a pre-processing step to partition the
donor pool and find the most appropriate subset of donors for a given target.

4.1 Intuition and Algorithms

The basic intuition behind our algorithm is that more donor units corresponds to higher-dimensional inputs in the linear
regression step of synthetic control, which in turn leads to higher-dimensional noise and more instability. Therefore, we
want to restrict to only the most relevant donors (via clustering) and thereby lower the dimension of the regression. We
accomplish this in a two-step approach:

• Algorithm 3 is a clustering step that partitions the donor units using k-means clustering. This enables the
donor selection algorithm to later identify the correct donor cluster for the target unit.

• With the identified clusters, Algorithm 4 finds a matching subgroup for a given target. This subgroup
specialization leads to a more accurate SC predictions with lower computational cost.

Algorithm 3 uses the assumption that the signal matrix M is low-rank with rank r. It first performs a singular value
decomposition (SVD) M = UΣV ⊤ =

∑r
i=1 siuiv

⊤
i , where the vi’s represent the r basis row vectors; that is, any rows

in M can be expressed as a linear combination of the vi’s. Define Ũ = UΣ. Then, for the j-th row of Ũ , Ũj,i can be
interpreted as how many vi’s are used to describe the row Mj .

What if there are two groups with very different distributions of Uj’s? Figure 1 visualizes this difference with the white
dashed circle and the black dashed circle: for each column of Ũ , we expect the distribution to be different across groups
but similar within each group. Performing a clustering algorithm (e.g., k-means in our case) on Ũ , we are separating
units based on the use of right singular vectors vi.

Algorithm 4 incorporates Algorithm 3 as a pre-processing step on the donor pool. The second step of Algorithm 4
computes ũ, a counterpart of Ũ for the target, and finds the matching cluster for the target. Note that we only use
pre-intervention data for this step, based on the original use-case of SC, where post-intervention data is assumed
to be missing for the target unit. A donor matrix A is constructed using data from the selected cluster. For the the
core synthetic control algorithm within Algorithm 4, we adopt Algorithm 2 since de-noising with HSVT before the
regression has been shown to be robust to noise (Amjad et al., 2018), although other preferred methods could be used in

1In the case of an intervention, this identity would not necessarily hold for t > T0.
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Figure 1: Visualization of the distribution of rows in Ũ . Each row Ũi can be interpreted as an embedding of the unit i
representing the composition of right singular vectors in that row.

Algorithm 3: Clustering Algorithm C(X; r)

Input: Donor matrix X , approximate rank r
1. Perform SVD
X = UΣV ⊤ (If desired, replace singular values in Σ with zero, except for the top r values.)
Ũ = UΣ
2. Perform K-means nO(1) steps of Lloyd’s method on the rows of Ũ .
3. Return cluster centers and V

this step instead. Note that the SC step takes the selected sub-group donor matrix A as an input, instead of the whole
donor set X .

Algorithm 4: clusterSC (X,x−; r)

Input: Donor matrix X , Pre-intervention target data x−, approximate rank r
1. Learn clusters
c1, · · · , ck, V ← C(X; r) (Algorithm 3, ct are cluster centers)
2. Find target’s matching donor cluster t
ũ = V −⊤x−

t = argmint ∥ct − ũ∥2 (t is target’s cluster label)
3. Construct donor matrix A
A = XCt (Ct is the set of units in cluster t)
4. Perform SC f̂ ←M(A, x−; r) (Algorithm 2)
return f̂ (SC weights)

4.2 Theoretical Guarantees

In this section, we provide theoretical guarantees on the performance of Algorithm 4 in terms of identifying subgroups
(Section 4.2.1), the impact of using A instead of X (Section 4.2.2), and the RMSE of SC (Section 4.2.3). All omitted
proofs are in Appendix C.

Following the notation from Section 3.1, let X = M + EM be a n× T donor pool matrix and A = S + ES be a sub-
matrix constructed by taking nA rows of X . Let the low-rank signal matrices have rank(M) = r and rank(S) = rS .
Then, we say the approximate-rank of X is r, and we define the (r + 1)-th singular value of the noisy matrix X as
σ∗
X = σr+1(X).

The pre-intervention error of the standard robust synthetic control algorithm is given by: MSE(m̂−;X) = E[ 1
T0
∥m−−

M̂−⊤f̂∥2], where f̂ ←M(X,x−). The post-intervention error is the same quantity as in (2) with − replaced by +
and T0 replaced by T − T0. RMSE is defined by taking a squared root inside the expectation. We are interested in the
change in MSE (or RMSE) when replacing X ∈ Rn×T with its subset A ∈ RnA×T .

5
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4.2.1 Accuracy of Subgroup Identification

First we show that existing subgroups in Θ-space are well-approximated by Algorithm 3. Consider the SVD of the true
signal matrix M = UΣV ⊤ = ŨV ⊤ (here, Ũ denotes left singular vectors multiplied by corresponding singular values
of M ; in all other sections, Ũ denotes the noisy version obtained by decomposing X).

Lemma 4.1. Ũ can be expressed as Ũ = h(Θ) for some L-bilipschitz function h.

Using the invariance of bilipschitz mapping, we show that Algorithm 3 identifies the cluster structure of the Θ,
misclassifying all but a small fraction of points. To show this, we first require the following lemma.
Lemma 4.2. If h is L-bilipschitz, then (1/L)∆k(Θ) ≤ ∆k(h(Θ)) ≤ L∆k(Θ), and for all k-partitions P ,
(1/L)∆k(Θ;P ) ≤ ∆k(h(Θ);P ) ≤ L∆k(Θ;P ).

Then, we can combine guarantees from Kumar and Kannan (2010) and Ostrovsky et al. (2013) to show that Algorithm
3 (effectively, Lloyd’s method on the left singular vectors) detects the planted cluster structure in poly-time.

Theorem 4.3. Take ϵ ≤ (400L4 + 401)−1/2. If Θ = {θi : i ∈ [n]} satisfies ∆k(Θ) ≤ ϵ∆k−1(Θ) with optimal
k-partition P ∗, then Algorithm 3 outputs a partition that matches P ∗ for all but O((k2 + ϵ2)n) of the points.

Proof sketch. Observe that h(Θ) is (ϵL2)-separated by Lemma 4.2. Hence, by a guarantee from Kumar and Kannan
(2010), Algorithm 3 can well-approximate the k-means optimal partition on h(Θ), call it P ′, with only a (k2ϵL2)-
fraction of points misclassified. From there, it suffices to show P ′ and P differ on at most O(ϵ2)-fraction of points. To
do this, we invoke Theorem 5.1 of (Ostrovsky et al., 2013), which restricts us to choosing ϵ = O(1/L2).

Theorem 4.3 implies that Algorithm 3 can well-approximate the subgroups in Θ using Ũ .

4.2.2 Effects of Subgroup Specialization

Next, we analyze the effect of performing Algorithm 2 on a selected donor pool A (i.e.,M(A, x−; rA)) instead of the
entire donor set X (i.e.,M(X,x−; r)). With k ≥ 2, we expect the following changes:

1. The number of donor units nA < n.
2. The rank of the signal matrix rS ≤ r.
3. The largest singular value suppressed in the HSVT step σ∗

A < σ∗
X . (Recall σ∗

X = σr+1(X))

While the first two are trivial, the third one is not. We provide analyses of the gap σ∗
X − σ∗

A under three different noise
settings: Gaussian, sub-Gaussian, and heavy-tailed. Theorem 4.4 presents our first result on the singular values, under
Gaussian noise Ei,t ∼ N (0, s2). This result shows that the gap between σ∗

X and σ∗
A will grow with larger scale of

noise (larger s).
Theorem 4.4 (Singular Value Concentration with Gaussian Noise). Let noise terms Ei,t ∼ N (0, s2). If r < T and
nA < n+ 4T − 4

√
nT , then

E[σ∗
X − σ∗

A] ≥ s(
√
n−
√
nA − 2

√
T ).

Proof. First, we show that E[σ∗
A] ≤ s(

√
nA +

√
T ).

E[σ∗
A] = E[σrS+1(S + ES)]

≤ σrS+1(S) + E[σ1(ES)]

≤ s(
√
nA +

√
T ).

The first inequality is from Weyl’s inequality on singular values, and σrS+1(S) = 0 by construction. The second
inequality is from Gordon’s theorem: E[σ1(Es)] ≤ s(

√
nA +

√
T ) (Vershynin, 2010).

Next, we show σ∗
X ≥ s(

√
n−
√
T ) by analyzing the eigenvalues of X⊤X:

λr+1(X
⊤X) = λr+1(M

⊤M + 2M⊤E + E⊤E)

≥ λr+1(M
⊤M) + λT (2M

⊤E) + λT (E
⊤E)

≥ λT (E
⊤E)

∴ E[λr+1(X
⊤X)] ≥

(
s(
√
n−
√
T )

)2

.
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The first inequality is from Weyl’s Inequality and λr+1(M
⊤M) = λT (2M

⊤E) = 0. The second inequality is from
Gordon’s theorem: E[σT (E)] ≥ s(

√
n−
√
T ). Finally, we obtain E[σ∗

X ] = E[
√

λr+1(X⊤X)] ≥ s(
√
n−
√
T ).

Combining these two bounds and rearranging terms, we see that the lower bound on σ∗
X is greater than the upper bound

on σ∗
A when nA < n+ 4T − 4

√
nT .

Next we consider the the sub-gaussian noise setting (Definition 4.1), where ∥Ei,t∥ψ2
= K. Our result in this setting,

Corollary 4.5, follows from Theorem 4.4 by instantiating Theorem 5.39 from Vershynin (2010), instead of Gordon’s.
Definition 4.1 (Sub-gaussian norm). The sub-gaussian norm of X , denoted by ||X||ψ2 is defined as

||X||ψ2
= sup

p≥1

1
√
p
(E[|X|p])1/p .

Corollary 4.5 (Singular Value Concentration with Sub-gaussian Noise). Let the noise terms satisfy ∥Ei,t∥ψ2 = K For

every t ≥ 0, if r < T and nA <
(√

n− CK2
√
T − 2t

)2

, then with probability at least 1− 2e−ct
2

,

σ∗
X − σ∗

A ≥
√
n−
√
nA − CK2

√
T − 2t,

where C > 0 and c > 0 are constants, and only c > 0 depends on the sub-gaussian norm K = ∥Ei,t∥ψ2
.

Finally, we consider settings where noise comes from a heavy-tailed distribution. This is the most challenging of the
three settings considered because the random noise terms will be less concentrated around zero, and thus learning from
the noisy data will be more difficult.
Corollary 4.6 (Singular Value Concentration with Heavy-tail Noise). Let the noise terms Ei,t follow a heavy-tailed
distribution. If r < T and nA < n+ 4Tt2 − 4t

√
nT , then for every t ≥ 0, with probability at least 1− 2Te−ct

2

,

E[σ∗
X − σ∗

A] ≥
√
n−
√
nA − 2t

√
T .

The bound of Theorem 4.4 is used in Section 4.2.3 to argue the improvement in SC performance under Gaussian noise;
if needed, one could instead adopt Corollary 4.5 and Corollary 4.6 depending on practical assumptions about noise
distributions.

4.2.3 Improvement in SC Performance

Finally, we translate the effect of subgroup specialization into an improvement in the upper bound of the SC prediction
error. We compare SC performance using only the selected donors A as an input forM, against performance using the
whole donor pool X , and give results for pre-intervention (Theorem 4.8) and post-intervention error (Theorem 4.10).

Let x0 = m0 + e0 be the placebo target unit that did not receive the intervention. Then, our goal is to construct an SC
prediction m̂0 that approximate m0 as accurately as possible.

Our first main result in this section is Theorem 4.8, which bounds the improvement in pre-intervention MSE from using
the selected donor pool A instead of the full donor pool X . To do this, Lemma 4.7 first gives an upper bound on the
pre-intervention MSE of standard synthetic control without clustering (i.e., Algorithm 2).
Lemma 4.7 (Pre-intervention MSE of SC). Given donor matrix X ∈ Rn×T , target x0 = m0 + e0, rank parameter r,
noise distribution Ei,t ∼ N (0, s2), and SC weights SC weights f̂ ←M(X,x−

0 ; r) learned using Algorithm 2, then,

MSE(m̂−
0 ;X) ≤ µ2

T0
E[(σ∗

X + 2s(
√
n+
√
T ))2] +

2s2r

T0
.

Proof. From Lemma 25 of Amjad et al. (2018),

E[∥m−
0 − m̂−

0 ∥2] ≤ E[∥(M− − M̂−)⊤f∗∥2] + 2s2r.

We bound the first term inside the expectation by

∥(M− − M̂−)⊤f∗∥2 ≤ ∥M− − M̂−∥2∥f∗∥2, (2)

using the property of the operator norm: ∥Ax∥ ≤ ∥A∥ · ∥x∥ for any matrix A and vector x. We bound the first term of
(2) by

∥M− − M̂−∥ ≤ ∥M − M̂∥ ≤ σ∗
X + 2∥X −M∥

≤ σ∗
X + 2∥E∥.

7
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Combing these bounds and the assumption ∥f∗∥ ≤ µ, we obtain

MSE(m̂−
0 ;X) ≤ 1

T0
E
[
(σ∗
X + 2∥E∥)2

]
µ2 +

2s2r

T0
.

Using the fact that E[∥E∥] ≤ s(
√
n+
√
T ) completes the proof.

Combining Lemma 4.7 with the bounds on singular values in Theorem 4.4 in Section 4.2.2 allows us to show that the
upper bound on pre-intervention MSE decreases when using selected donor pool A instead of the full donor pool X .

Theorem 4.8. If nA < n + 4T − 4
√
nT , then the upper bound on pre-intervention MSE of Algorithm 4 is strictly

smaller than that of Algorithm 2, and the difference in the upper bounds is Ω(s2n).

The change in MSE can be seen from the bound stated in Lemma 4.7, which has three elements that change with the
donor matrix: σ∗

X to σ∗
A, n to nA, and r to rS . We know that all three changes will reduce this upper bound.

Next, we analyze the post-intervention root mean squared error (RMSE), and show similar improvements when changing
from X to A (Theorem 4.10). First, Lemma 4.9 gives an upper bound on the post-intervention RMSE of SC without
clustering (Algorithm 2), under the standard assumption that the SC weights f̂ ←M(X,x−

0 ; r) have ∥f̂∥2 ≤ η for
some η ≥ 0 (Amjad et al., 2018).
Lemma 4.9 (Post-intervention RMSE of SC). Given a donor matrix X ∈ Rn×T , a target x0, rank parameter r, noise
distribution Ei,t ∼ N (0, s2), and SC weights f̂ ←M(X,x−

0 ; r) learned using Algorithm 2,

RMSE(m̂+
0 ;X) ≤ η√

T − T0

E[σ∗
X + 2s(

√
n+
√
T )]

+
√
n(µ+ η).

Proof. We use triangle inequality and the property of induced norm to upper bound the following quantity:

∥m+
0 − m̂+

0 ∥ = ∥(M+)⊤f∗ − (M̂+)⊤f̂∥
≤ ∥(M+ − M̂+)⊤f̂∥+ ∥(M+)⊤(f∗ − f̂)∥
≤ ∥M+ − M̂+∥ · ∥f̂∥+ ∥M+∥ · ∥f∗ − f̂∥
≤ ∥M+ − M̂+∥η + ∥M+∥F (∥f∗∥+ ∥f̂∥).

Taking the expectation of both sides and using the fact that E[∥M+ − M̂+∥] ≤ E[σ∗
X + 2∥E∥2] from Lemma B.5

gives,

E[∥m+
0 − m̂+

0 ∥] ≤ E[σ∗
X + 2∥E∥2]η + ∥M+∥F (µ+ η).

Since ∥M+∥F ≤
√

n(T − T0), we obtain,

RMSE(m̂+
0 ;X) ≤ η√

T − T0

E[σ∗
X + 2∥E∥2] +

√
n(µ+ η).

This lemma can be combined with the bound on the difference in singular values from Theorem 4.4 to bound the
difference in post-intervention RMSE from using A versus X .

Theorem 4.10. If nA < n+ 4T − 4
√
nT , then the upper bound on post-intervention RMSE of Algorithm 4 is strictly

smaller than that of Algorithm 2, and the difference in the upper bounds is Ω(s
√
n).

Again, the upper bound stated in Lemma 4.9 has three elements that changes when the donor matrix becomes A instead
of X: σ∗

X to σ∗
A, n to nA, and r to rS . All three changes reduce the bound, and hence the upper bound on RMSE

strictly decreases when using Algorithm 4.

5 Empirical Evaluations

In this section, we empirically demonstrate the performance improvements of our method using simulated datasets. To
get a sense of a plausible size for the dataset, we review the literature that applied synthetic control on disaggregate-level
datasets. Abadie and L’Hour (2021) adopt synthetic control to measure the effect of participation in a government
program on an individual’s yearly income. They construct SC instances out of n = 2490 individuals as a donor pool

8
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Figure 2: Post-intervention MSE using clusterSC (blue) and using the same SC algorithm without our clustering step
(orange), for varying levels of noise.

and with 10 covariates (equivalent to T0). Robbins et al. (2017) examine the effect of a crime intervention on crime
levels measured at the census block level. With 3535 donor units, SC was constructed with T0 = 12 pre-intervention
time-series measurements along with auxiliary variables. Vagni and Breen (2021) show that having a child reduces
womens’ earnings by about 45 per cent by constructing SC with 630 women as donor units. T0 varies depending on the
woman’s first childbirth year, and was at most 7.

Based on this, we choose T = 10 and n ∈ {1000, 2000}with nA/nB = 1 (even split), and set T0 = 8 in all experiments.
We construct a dataset X with two subgroups, A = S +EA and B = S′ +EB , using multiple sinusoidal time series.
Let the rank of S be rS . For each base time series, we sample three parameters—αi (magnitude), ωi (frequency),
and ϕi (delay)—to generate a sine wave signal vi,t = αi sin (2πωit+ ϕi), ∀i ∈ [rS ]. The observation matrix is then
constructed with elements Si,t =

∑k
i=1 wi ·vi,t, where wi ∼ Unif([0, 1]), ∀i ∈ [rS ]. Finally, we introduce observation

noise, yielding Ai,t = Si,t +Ei,t, where Ei,t ∼ N (0, s2) for varying levels of s ≥ 0. We repeat the same process with
different parameters to construct B, and concatenate the two matrices to make X = [A⊤, B⊤]⊤. To simulate the latent
variable model, we use α ∼ Beta(2, 2), ω ∼ Unif(1, 3), ϕ ∼ N (0, 1) for A, and α ∼ Beta(2, 5), ω ∼ Unif(3, 6),
ϕ ∼ N (0, 1) for B. Observation noise following N (0, s2) was added with s2 ∈ {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}.
We use the sklearn implementation of Lloyd’s k-means algorithm with k-means++ initialization, and automated
search for k with silhouette scores.2

For each generated dataset, we perform a leave-one-out placebo test by choosing one unit as a target and the rest as a
potential donor pool. For each target, we run synthetic control using two methods: i) clusterSC (using a subset of the
donors A selected via Algorithm 4) and ii) robust synthetic control with no clustering (using the whole donor pool X).
We iterate this process for 500 datasets in each setting.

Figure 2 shows the distribution of post-intervention MSE of the two algorithms, when nA = nB = 500. The boxplot
shows the quartiles of MSE, the whiskers extend to the furthest datapoint within 1.5 times the interquartile range, and
the rest are shown as small dots. We observe that clusterSC consistently outperforms no clustering setup, across all
noise levels and other choices of n. This aligns with our Theorem 4.10, which promises a tighter error bound.

Next, we define the pair-wise improvement as the difference in post-intervention MSE scores; Ii := MSE(m̂+
i ;X)−

MSE(m̂+
i ;A). Then, we take median(Ii) as a metric to assess the overall improvement of one dataset. For computa-

tional efficiency, we randomly select 30% of the units in A as target units for the leave-one-out test.

Figure 3 shows the median pair-wise improvements (i.e., median(Ii)) for varying levels of noise. We observe that the
median improvement is almost always non-negative, meaning that more than half of the individuals benefits from our
method in a pair-wise comparison with high probability. The improvement grows as noise increases, especially with
large n = 2000, corroborating our Theorem 4.10. We provide additional empirical evaluations in Appendix D.

2https://scikit-learn.org/1.5/modules/generated/sklearn.metrics.silhouette_score.html

9

https://scikit-learn.org/1.5/modules/generated/sklearn.metrics.silhouette_score.html


arXiv Template A PREPRINT

Figure 3: Median of the pair-wise improvement Ii, measured for each dataset, for different noise levels (s2). Shades
represent 95% confidence interval.

6 Discussion and Future Work

This paper presents a novel approach to SC on disaggregate-level datasets, addressing the challenges of higher noise
and increased dimensionality by incorporating a principled clustering step. To the best of our knowledge, this is the first
method to directly reduce the dimension of regression weights, in contrast to approaches that rely on regularization to
suppress the number of active donors. Our approach advances synthetic control methodology, making it better suited
for applications where individual-level conditional treatment effects are of interest, such as in drug trials or targeted
marketing analysis.

Our algorithm is supported by two main theoretical guarantees. Theorem 4.3 demonstrates the accuracy of our clustering
step in identifying intrinsic cluster structure among the donor latent variables Θ. Theorems 4.8 and 4.10 establish a
tighter upper bound on prediction error induced by our algorithm, which is empirically validated in Section 5.

Conceptually, clusterSC is similar to LASSO in that it selects a small subset of donors. However, our clustering method
offers an alternative solution for cases where LASSO regression may be less desirable, such as when dealing with
missing data. While the effect of the clustering step on different SC versions requires further analysis, the core principle
of focusing on the singular value concentration remains valid under the common assumption of a latent variable model
that produces an approximately low-rank matrix.

Lastly, we acknowledge a potential fairness issue in our approach. As shown empirically in Section 5, our method
guarantees improved overall performance of the SC algorithm. However, it does not ensure that the prediction error
will decrease for every individual target unit—while the majority of units may benefit, some could experience worse
outcomes. This uneven distribution of benefits raises concerns about fairness, especially in individual-level datasets.
Investigating the potential disproportionate effects on minority groups presents an avenue for future research.
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A Technical Definitions

Throughout the paper, we use lower-case letters to denote a vector x and upper-case letters to denote a matrix X . The
norms ∥X∥ and ∥x∥ refer to the spectral norm and ℓ2 norm, respectively.

In this section, we summarize important definitions used in our paper. (Some are repeated in the main part too.)
Definition A.1 (Sub-gaussian norm). The sub-gaussian norm of X , denoted by ||X||ψ2

is defined as

||X||ψ2
= sup

p≥1

1
√
p
(E[|X|p])1/p .

Definition A.2 (Bilipschitz continuity). Let (X, d), (Y, ρ) be metric spaces. A map g : (X, d) 7→ (Y, d′) is L-bilipschitz,
for L > 0, if, for all x, x′ ∈ X

1

L
d(x, x′) ≤ ρ(g(x), g(x′)) ≤ L d(x, x′)

B Useful Theorems and Lemmas

B.1 Related to Theorem 4.4

First of all, we introduce two version sof Weyl’s inequality used in the proof of Theorem 4.4.
Theorem B.1 (Weyl’s Inequality on Singular Values). For matrices A and B in Rn×m, let k = min(n,m). Then, the
following holds for all i, j ∈ [k], i+ j − 1 ≤ k.

σi+j−1(A+B) ≤ σi(A) + σj(B)

Theorem B.2 (Weyl’s Inequality on Eigenvalues). For square matrices A and B in Rn×n, the following holds for all
i, j ∈ [n], i+ j − 1 ≤ k

λi+j−1(A+B) ≤ λi(A) + λj(B)

And for all i ∈ [n],
λi(A) + λn(B) ≤ λi(A+B) ≤ λi(A) + λ1(B).

Next, we introduce Gordon’s theorem that bounds the singular values of Gaussian matrices, also used in the proof of
Theorem 4.4.
Theorem B.3 (Gordon’s theorem for Gaussian matrices). Let A be an N × n matrix whose entries are independent
standard normal random variables. Then

√
N −

√
n ≤ E[σmin(A)] ≤ E[σmax(A)] ≤

√
N +

√
n.

B.2 Related to Theorem 4.8 and Theorem 4.10

In this section, we introduce theorems used in the proof of Theorem 4.8 and Theorem 4.10. The first one is from
Chatterjee (2015), and the proof can be found in the cited paper.
Theorem B.4 (Perturbation of Singular Values, Chatterjee (2015)). Let A and B be two m × n matrices. Let
k = min{m,n}. Let σ1(A), . . . , σk(A) be the singular values of A in decreasing order and repeated by multiplicities.
Similarly, we define σ1(B), . . . , σk(B) for B and σ1(A−B), . . . , σk(A−B) for matrix A−B. Then,

max
1≤i≤k

|σi(A)− σi(B)| ≤ max
1≤i≤k

|σi(A−B)|.

Using Theorem B.4, we derive the following lemma. We provide the proof for completeness, but the proof is available
in Chatterjee (2015) and Amjad et al. (2018) as well.
Lemma B.5 (Approximation Bound Between Two Matrices, Lemma 20 of Amjad et al. (2018).). Let A and B be two
matrices of the same size. Let A =

∑m
i=1 σi(A)uiv

T
i be the singular value decomposition of A with σ1(A), . . . , σm(A)

in decreasing order and with repeated multiplicities. For any choice of µ ≥ 0, let S = {i : σi ≥ µ}. Then, define

B̂ =
∑
i∈S

σi(A)uiv
T
i .

Let σi(B) be the singular values of B in decreasing order and repeated by multiplicities, with σ∗
B = maxi/∈S σi(B).

Then

||B̂ −B|| ≤ σ∗
B + 2||A−B||.

12
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Proof. By Theorem B.4, we have that σi ≤ σi(B) + ||A−B|| for all i. Applying triangle inequality, we obtain

∥B̂ −B∥ ≤ ∥B̂ −A∥+ ∥A−B∥
= max

i/∈S
σi(A) + ∥A−B∥

≤ max
i/∈S

(
σi(B) + ∥A−B∥

)
+ ∥A−B∥

= σ∗
B + 2∥A−B∥.

The following Lemma is Lemma 25 of Amjad et al. (2018). Again, we provide a simplified version of the proof here
using our notation for completeness.

Lemma B.6 (Universal Bound on Pre-intervention MSE of OLS, Lemma 25 of Amjad et al. (2018).). Suppose
x−
0 = m−

0 + ϵ−0 with E[ϵ0,j ] = 0 and Var(ϵ0,j) ≤ s2 for all j ∈ [T0]. Let f∗ be the true weights assumed in Section 3.1
and f̂ be the output of Algorithm 2. Then,

E∥m−
0 − m̂−

0 ∥2 ≤ E∥(M− − M̂−)⊤f∗∥2 + 2s2r, (3)

where r = rank(M).

Proof. For easier notation, we define the following:

Q := (M−)T , Q̂ := (M̂−)T .

Then, the following is true:

m−
0 := Qf∗, m̂−

0 := Q̂f̂ .

Recall that for the target row decomposes to x−
0 = m−

0 + ϵ−0 . m−
0 = Qf∗. Since f̂ minimizes ∥x−

0 − Q̂f∥ for any
f ∈ Rn, we have

∥m−
0 − m̂−

0 ∥2 = ∥(x−
0 − ϵ−0 )− Q̂f̂∥2

= ∥(x−
0 − Q̂f̂) + (−ϵ−0 )∥2

= ∥x−
0 − Q̂f̂∥2 + ∥ϵ−0 ∥2 + 2⟨−ϵ−0 , x

−
0 − Q̂f̂⟩

≤ ∥x−
0 − Q̂f∗∥2 + ∥ϵ−0 ∥2 + 2⟨−ϵ−0 , x

−
0 − Q̂f̂⟩

= ∥(Qf∗ + ϵ−0 )− Q̂f∗∥2 + ∥ϵ−0 ∥2 + 2⟨−ϵ−0 , x
−
0 − Q̂f̂⟩

= ∥(Q− Q̂)f∗ + ϵ−0 ∥2 + ∥ϵ
−
0 ∥2 + 2⟨−ϵ−0 , x

−
0 − Q̂f̂⟩

= ∥(Q− Q̂)f∗∥2 + 2∥ϵ−0 ∥2 + 2⟨ϵ−0 , (Q− Q̂)f∗⟩+ 2⟨−ϵ−0 , x
−
0 − Q̂f̂⟩.

By taking expectations, we have

E∥m̂−
0 −m−

0 ∥2 ≤ E∥(Q− Q̂)f∗∥2 + 2E∥ϵ−0 ∥2 + 2E[⟨ϵ−0 , (Q− Q̂)f∗⟩] + 2E[⟨−ϵ−0 , x
−
0 − Q̂f̂⟩]. (4)

We will now deal with the two inner products on the right hand side of equation (4).

E[⟨ϵ−0 , (Q− Q̂)f∗⟩] = E[(ϵ−0 )
T ]Qf∗ − E[(ϵ−0 )

T Q̂]f∗

= −E[(ϵ−0 )T ]E[Q̂]f∗

= 0.

13
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Also,
E[(ϵ−0 )

T Q̂Q̂†ϵ−0 ] = E[tr((ϵ−0 )
T Q̂Q̂†ϵ−0 )]

= E[tr(Q̂Q̂†ϵ−0 (ϵ
−
0 )

T )]

= tr
(
E[Q̂Q̂†ϵ−0 (ϵ

−
0 )

T ]
)

= tr
(
E[Q̂Q̂†]E[ϵ−0 (ϵ

−
0 )

T ]
)

≤ tr
(
E[Q̂Q̂†]s2I

)
= s2E[tr(Q̂Q̂†)]

(a)
= s2E[rank(Q̂)]

≤ s2r,

where (a) follows from the fact that Q̂Q̂† is a projection matrix with rank r.

For the second inner product, using f̂ = Q̂†x−
0 ,

E[⟨−ϵ−0 , x
−
0 − Q̂f̂⟩] = E[(ϵ−0 )

T Q̂f̂ ]− E[(ϵ−0 )
Tx−

0 ]

= E[(ϵ−0 )
T Q̂Q̂†x−

0 ]− E[(ϵ−0 )
T ]m−

0 − E[(ϵ−0 )
T ϵ−0 ]

= E[(ϵ−0 )
T Q̂Q̂†]m−

0 + E[(ϵ−0 )
T Q̂Q̂†ϵ−0 ]− E[(ϵ−0 )

T ϵ−0 ]

(a)
= E[(ϵ−0 )

T ]E[Q̂Q̂†]m−
0 + E[(ϵ−0 )

T Q̂Q̂†ϵ−0 ]− E[(ϵ−0 )
T ϵ−0 ]

= E[(ϵ−0 )
T Q̂Q̂†ϵ−0 ]− E∥ϵ−0 ∥2

≤ s2r − E∥ϵ−0 ∥2,
where (a) follows from the independence of noise.

Finally, we get

E∥m̂−
0 −m−

0 ∥2 ≤ E∥(Q− Q̂)f∗∥2 + 2E∥ϵ−0 ∥2 + 2(s2r − E∥ϵ−0 ∥2)
= E∥(Q− Q̂)f∗∥2 + 2s2r.

C Omitted Proofs

In this section, we provide omitted proofs from Section 4.2.

C.1 Proof of Lemma 4.1

Lemma 4.1. Ũ can be expressed as Ũ = h(Θ) for some L-bilipschitz function h.

Proof. We can write the rows of M as Mi = g(θi, ρ) = (g(θi, ρ1), · · · , g(θi, ρT )) with L-bilipschitz g.
∥θi − θj∥ ≤ L∥g(θi, ρ)− g(θj , ρ)∥

= L∥Mi −Mj∥
= L∥ŨiV ⊤ − ŨjV

⊤∥
≤ L∥V T ∥ · ∥Ũi − Ũj∥

For the lower bound, we have

∥θi − θj∥ ≥
1

L
∥Mi −Mj∥

∥θi − θj∥∥V ∥ ≥
1

L
∥(Ũi − Ũj)V

⊤∥∥V ∥

≥ 1

L
∥Ũi − Ũj∥,

14



arXiv Template A PREPRINT

where the last inequality is from the property of induced norm. Finally, since the columns of V are orthogonal, we have
∥V ∥ = ∥V ⊤∥ = 1.

C.2 Proof of Lemma 4.2

Lemma 4.2. If h is L-bilipschitz, then (1/L)∆k(Θ) ≤ ∆k(h(Θ)) ≤ L∆k(Θ), and for all k-partitions P ,
(1/L)∆k(Θ;P ) ≤ ∆k(h(Θ);P ) ≤ L∆k(Θ;P ).

Proof. Let P be the optimal partition for Θ and let P ′ be the optimal for h(Θ). Observe

∆2
k(Θ) ≤ ∆2

k(Θ;P ′) =

k∑
t=1

1

|P ′
t |

∑
i,j∈P ′

t

∥θj − θj∥2 ≤ L2
k∑
t=1

1

|P ′|
∑
i,j∈P ′

t

||h(θi)− h(θj)||2 = L2∆2
k(h(Θ))

≤ L2
k∑
t=1

1

|Pt|
∑
i,j∈Pt

||h(θi)− h(θj)||2

≤ L4
k∑
t=1

1

|Pt|
∑
i,j∈Ct

∥θi − θj∥2 = L4∆2
k(Θ)

Dividing by L2 and taking a square root returns claim (i). Claim (ii) follows immediately from the fact that
∥h(θi)−h(θj)∥

∥θi−θj∥ ∈ [ 1L , L].

C.3 Proof of Theorem 4.3

In this section, we show the full proof of Theorem 4.3. We restate the theorem below for convenience.

Theorem 4.3. Take ϵ ≤ (400L4 + 401)−1/2. If Θ = {θi : i ∈ [n]} satisfies ∆k(Θ) ≤ ϵ∆k−1(Θ) with optimal
k-partition P ∗, then Algorithm 3 outputs a partition that matches P ∗ for all but O((k2 + ϵ2)n) of the points.

Proof. Let P ∗ = (P ∗
1 , ..., P

∗
n) be the optimal k-means partition for Θ; let P ′ be the optimal k-means partition for h(Θ).

Let ∆(Θ;P ) be the k-means cost of a partition P on points of Θ. Observe:

∆k(h(Θ);P ) ≤ L∆k(Θ;P ) (Lemma 4.2(ii))
≤ Lϵ∆k−1(Θ) (Definition of P )

≤ L2ϵ∆k−1(h(Θ)) (Lemma 4.2(i))

Since L4ϵ2 ≤ 1−401ϵ2

400 , by the assumption, we can apply Theorem 5.1 from (Ostrovsky et al., 2013): there exists some
matching σ of clusters in P to clusterings in P ′ such that for each i ∈ [k], |Pi ⊖ P ′

σ(i)| ≤ 161ϵ2|P ′
σ(k)| (where ⊖

denotes symmetric difference). This implies:

#(misclassified) ≤
k∑
i=1

|Pi ⊖ P ′
σ(i)| ≤

k∑
i=1

161ϵ2|P ′
σ(k)| = 161ϵ2n

By Lemma 4.2, ∆k(h(Θ)) ≤ ϵL2∆k−1(h(Θ)). In other words, h(Θ) is (ϵL2)-separated. In Claim 6.10, (Kumar and
Kannan, 2010) show that this condition implies (1− ϵL2)-fraction of the points in h(Θ) are “good" points in the sense
of satisfying a more general separation condition, which they define in their Definition 2.1. Their Theorem 2.2 implies
that Lloyd’s method on {Ũi} will yield a partition matching P ′ on all but k2(L2ϵ)n points. This means the output
will deviate from P ′ on at most O(k2L2ϵ)n+ 161ϵ2n = O((k2L2ϵ+ ϵ2)n) = O((k2 + ϵ2)n) (due to our choice of
ϵ = O(1/L2)) of the points.

C.4 Proof of Theorem 4.8

Theorem 4.8. If nA < n + 4T − 4
√
nT , then the upper bound on pre-intervention MSE of Algorithm 4 is strictly

smaller than that of Algorithm 2, and the difference in the upper bounds is Ω(s2n).
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Proof. Let nA = α2n for some α ∈ (0, 1). We want to investigate the dependence of the gap between the two upper
bounds presented in Lemma 4.7 on n (the number of units) and s2 (noise). Specifically, we focus on the terms inside
the expectation in the upper bound since µ2

T0
does not change and 2s2r

T0
can only decrease.

By expanding the terms inside the expectation, we get(
σ∗
X + 2s(

√
n+
√
T )

)2

= σ∗2
X + 4s(

√
n+
√
T )σ∗

X + 4s2(
√
n+
√
T )2 (5)

= σ∗2
X + 4s(

√
n+
√
T )σ∗

X + 4s2n+ 8s2
√
nT + 4s2T. (6)

When we change the donor matrix to A instead of X , this changes to(
σ∗
A + 2s(α

√
n+
√
T )

)2

= σ∗2
A + 4s(α

√
n+
√
T )σ∗

A + 4s2α2n+ 8s2α
√
nT + 4s2T. (7)

Then, the difference between the two becomes(
σ∗
X + 2s(

√
n+
√
T )

)2

−
(
σ∗
A + 2s(α

√
n+
√
T )

)2

(8)

= σ∗2
X − σ∗2

A + 4s(
√
n+
√
T )(σ∗

X − σ∗
A)− (1− α)4s

√
nσ∗

A + (1− α2)4s2n+ (1− α)8s2
√
nT (9)

= (σ∗
X + σ∗

A + 4s(
√
n+
√
T ))(σ∗

X − σ∗
A)− (1− α)4s

√
nσ∗

A + (1− α2)4s2n+ (1− α)8s2
√
nT (10)

Now we take the expectation and apply Theorem 4.4 to lower bound this quantity

E[(8)] ≥ (2σ∗
A + s(5− α)

√
n+ 2s

√
T )((1− α)s

√
n− 2s

√
T ) (11)

− 4(1− α)s
√
nσ∗

A + 4(1− α2)s2n+ 8(1− α)s2
√
nT (12)

= 2(1− α)s
√
nσ∗

A − 4(1− α)s
√
nσ∗

A − 4s
√
Tσ∗

A + s2(5− α)(1− α)n+ 2s2(1− α)
√
nT (13)

− 2s2(5− α)
√
nT − 4s2T + (1− α2)4s2n+ (1− α)8s2

√
nT (14)

= − 2(1− α)s
√
nσ∗

A − 4s
√
Tσ∗

A + s2((9− 6α− 3α2)n− 4T − 8α2
√
nT ) (15)

= − s
(
2(1− α)

√
n+ 4

√
T
)
σ∗
A + 3(α+ 3)(1− α)s2n︸ ︷︷ ︸

dominating term

−
(
4s2T + 8s2α2

√
nT

)
. (16)

The first and the third terms are negative but they are relatively small numbers compared to the middle one (highlighted
as dominating term). Hence, for sufficiently large n, we have Equation E[(8)] = Ω(s2n).

Finally, The difference in the two upper bounds is

µ2

T0
E[
(
σ∗
X + 2s(

√
n+
√
T )

)2

] +
2s2r

T0
− µ2

T0
E[
(
σ∗
A + 2s(α

√
n+
√
T )

)2

]− 2s2rS
T0

(17)

=
µ2

T0
E[
(
σ∗
X + 2s(

√
n+
√
T )

)2

−
(
σ∗
A + 2s(α

√
n+
√
T )

)2

] +
2s2

T0
(r − rS) (18)

= Ω(s2n), (19)

since n≫ T > T0, µ is a constant, and r − rS ≥ 0.

C.5 Proof of Theorem 4.10

Note: there was a typo in the main text where Ω was replaced by O. The correct version is with Ω as presented here.

Theorem 4.10. If nA < n+ 4T − 4
√
nT , then the upper bound on post-intervention RMSE of Algorithm 4 is strictly

smaller than that of Algorithm 2, and the difference in the upper bounds is Ω(s
√
n).

Proof. Let nA = α2n for some α ∈ (0, 1). Now we want to investigate the gap between post-intervention RMSE upper
bounds presented in Lemma 4.9. Starting from the upper bound

η√
T − T0

E[σ∗
X + 2s(

√
n+
√
T )] +

√
n(µ+ η),
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we obtain the difference
η√

T − T0

E[σ∗
X − σ∗

A + 2s(1− α)
√
n] + (1− α)

√
n(µ+ η) (20)

≥ η√
T − T0

(
s((1− α)

√
n− 2

√
T ) + 2s(1− α)

√
n
)
+ (1− α)

√
n(µ+ η) (21)

=
η√

T − T0

(
s(3(1− α)

√
n− 2

√
T )

)
+ (1− α)

√
n(µ+ η), (22)

where the first inequality comes from Theorem 4.4. Since n ≫ T and µ and η are constants, we conclude that the
difference is Ω(s

√
n).

D More Results on Simulation Datasets

In this section, we show more results from empirical evaluations of our method. Our method can flexibly adopt different
versions of synthetic control methods. To be specific, we try different regression methods for step 3 of Algorithm 2.
Appendix D.1 shows the performance of clusterSC with OLS and Ridge regression. Appendix D.2 presents an analysis
of clusterSC with Lasso regression.

D.1 clusterSC with Robust Synthetic Control (OLS and Ridge regression)

Robust synthetic control (Amjad et al., 2018) first applies de-noising step (HSVT) and then learns weights using OLS
or ridge regression. This is simply adopting OLS or ridge regression in step 3 of Algorithm 2. In this section, we show
the results comparing the performance of robust synthetic control both with and without the clustering step. We use
the same data generating method as in Section 5, with the same parameters nA = nB ∈ {500, 1000} and T = 10.
The number of distinct signals in each sub-matrices A and B are rA = rB = 3. The experiment was iterated for
100 randomly generated datasets, and the ridge coefficient was 0.01 for all cases (except for OLS where there is no
regularizer).

Figure 4 shows the average MSE per dataset over varying noise levels (s2), using 1) robust synthetic control with OLS
(blue), 2) robust synthetic control with ridge (orange), 3) clusterSC with OLS (green), and 4) clusterSC with ridge (red).
We observe that ridge regression performs better than OLS with or without the clustering step. With clusterSC, we
reduce the expectation of MSE and the variance as well, regardless of the choice of regression method (OLS or ridge).

Figure 5 shows a similar result to Figure 3; the pair-wise improvement induced by the clustering step, for each SC
instance over varying noise level. We observe that the improvement is almost always positive, and the magnitude is
larger in a high-noise regime. The improvement is more stable (low variance) with higher n, and the improvement in
OLS and ridge regression is not too different.

D.2 clusterSC with Lasso regression

In this section, we use Lasso regression for step 3 of Algorithm 2. Again, we use the same data generating method as
in Section 5, with the same parameters nA = nB ∈ {500, 1000} and T = 10. The number of distinct signals in each

Figure 4: Median post-intervention MSE, measured per dataset. Each boxplot corresponds to ridge, OLS, cluster and
then ridge, and cluster and then OLS, from left to right, plotted for each noise level.
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Figure 5: Median of the pair-wise improvements observed when using OLS (blue) and ridge regression (orange), over
different noise levels.

sub-matrices A and B are rA = rB = 3. The experiment was iterated for 100 randomly generated datasets, and the
Lasso coefficient was 0.01 for all cases. Due to the high computational cost of Lasso, we only test for noise levels
s2 ∈ {0.1, 0.2, 0.3, 0.4}.
Figure 6 shows the average post-intervention MSE. We observe more improvement with clustering as noise level
increases. Compared to the results in Figure 4, the improvement induced by the clustering step when regression is
performed with Lasso is not as large as compared to OLS or Ridge.

Figure 6: Median post-intervention MSE, measured per dataset. We compare using Lasso with HSVT (blue) and the
same setting with cluster step (orange).

To further investigate, we analyze the active donors selected by Lasso regression, which correspond to donor units
with non-zero SC weights. Since Lasso produces a sparse vector, it effectively selects a subset of relevant donors to
reconstruct the target unit. In our experimental setup, units in group A share the same signals, and all target units are
sampled from A. Ideally, the relevant donors should be chosen from A rather than B. To quantify this, we use precision
scores to assess the proportion of selected donors that belong to group A.

Figure 7 presents the precision scores of the active donor units selected by Lasso regression, i.e., the fraction of active
donors that correctly belong to the true group A. The precision scores for Lasso (top row) are right skewed with a high
concentration at 1, meaning that Lasso by itself can accurately select a subset of relevant donors. This naturally leads to
a lesser degree of improvement when applying our clustering step on top of Lasso, since Lasso captures part of the
performance gain from clustering. The bottom row, which shows clusterSC with Lasso regression, is even more right
skewed and concentrate at a precision score of 1. Additionally, we observe that although the distributions for both
become less right skewed as noise increases, lasso with clustering better maintains its skew. This explains why the MSE
improvement in Figure 6 increases for higher noise levels.

We can further analyze this improvement by investigating how effectively the clustering step (k-means) selects a good
donor set by computing its F1 and precision scores with units in group A (from Step 4 of Algorithm 4). Figure 8
presents histograms of F1 scores (top row) and precision scores (bottom row) for varying noise levels. A precision
score close to 1 indicates that most of the selected donors from the clustering step are already from the relevant group
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Figure 7: Histogram of the precision score of active donor units from using Lasso regression with HSVT. The first row
is without clustering, and the second row is with the clusering step (our method, clusterSC with Lasso regression).

A, making it easier for Lasso to select the best fit among them. This allows the regression to more easily pick up the
relevant donors. In contrast, without clustering, Lasso must filter out irrelevant donors from group B solely through the
regression step.

Also in Figure 8, we observe that both F1 and precision decrease as noise increases, and the distributions are bimodal
with increasingly larger left mode as noise increases, similar to Figure 7. The left mode suggests that our clustering
algorithm is assigning a new target unit to the wrong cluster for some fraction (Step 2 of Algorithm 4), indicating that
increased noise leads to lowered generalization capabilities of k-means. This agrees with the overall higher MSE scores
for higher noise levels.

Figure 8: Histograms of Precision scores of donor units selected by our clustering step compared to units in A, over
varying noise levels.

D.2.1 Runtime analysis

Like Lasso, the cluster pre-processing step seeks to isolate only the most important donors for target reconstruction.
Unlike Lasso, the cluster pre-processing step avoids running a linear regression in the full n dimensions. This allows
for significant runtime improvements when Lasso regression was used in step 4 of Algorithm 2, which we explore in
this section.

The asymptotic runtime analysis of our algorithm decomposes into three main bottlenecks: (1) SVD on the original
matrix, (2) clustering , and (3) regression (on the downsampled data). For each step, we present the following lemmas
to show the aymptotic bound on the computational complexity.

Lemma D.1 (Ostrovsky et al. (2013)). Algorithm 3 with O(2O(k/ϵ)rT ) steps of Lloyd’s method outputs a (1 + ϵ)-
approximate optimal k-means partitions for h(Θ) (which, per Theorem 4.3, is approximately optimal for Θ).
Lemma D.2 (Golub and Van Loan (2013), Roughgarden and Valiant (2015)). Computing the top r singular values and
corresponding singular vectors of an n×m matrix takes O(nmr) time.
Lemma D.3 (Efron et al. (2004)). Lasso regression on v variables (number of features) with sample size s (number of
observations) each takes time O(v3 + v2s).
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Note that in synthetic control, the number of features in usual regression setting is actually the number of donors n, as
we are predicting the behavior of the target donor per-time-step. Then, we have

• Runtime of clusterSC with Lasso: O(nTr + 2O(k/ϵ)rT + n3
A + n2

AT ) ≍ n+ n3
A

• Runtime of HSVT + Lasso without Clustering: O(nTr + n3 + n2T ) ≍ n3

For disaggregate-level data, we think of n as dominating the rest of the terms (since n≫ T , as explained in Section
3.1.), and we think of k as constant or near-constant. Note that if k = Θ(log(log n)) and clusters are balanced, i.e.
nA = n/k, we see that the cluster algorithm achieves an asymptotic improvement over the pure lasso algorithm, by a
factor of (log(log n))3. In the case of imbalanced clusters and k = O(1) (and under the assumption that our clustering
step is robust to this imbalance3), then nA can be arbitrarily smaller than n, yielding arbitrary runtime improvement.

Note that using the cluster pre-processing with more efficient regression methods like ridge regression––which more
easily take advantage of the low-rank assumption––would yield even greater runtime improvements.

3Note that clustering condition used in this paper, from (Ostrovsky et al., 2013), is sensitive to cluster size imbalance. More
general separation conditions, such as that of (Kumar and Kannan, 2010), are more robust.
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