Compressibility Barriers to Neighborhood-Preserving Data Visualizations Noah Bergam (Columbia University, CS Dept.) Joint work w. Szymon Snoeck and Nakul Verma ## PROBLEM Many scientists want to visualize big (say, 100k points, 10k dimensions) datasets in 2D or 3D plots, and often resort to (unreliable) tools like t-SNE and UMAP. #### **FINDINGS** ### Most graphs are maximally difficult. For most* n-vertex G, $$\dim_{\alpha}(G) \gtrsim \frac{\log n}{\log\left(\frac{8}{\alpha}\right)}$$ (Note: $\dim_{\alpha}(G) \leq \log(n)$ for all G) ## Sparsity hardly helps in general metrics. For most n-vertex, k-regular G, k = O(1), $$\dim_{\alpha}(G) \gtrsim \frac{\log n}{\log\left(\frac{\log n}{\alpha}\right)}$$ *most = for all but $2^{-\Omega(n)}$ fraction ## A simple model: α -preservation ground-truth graph G = (V, E) embedding in (representing *neighborhoods*) metric space (X, ρ) Definition: A map $f: V \to X$ is an α -preservation of G = (V, E) if $$(u,v) \in E \implies d(f(u),f(v)) < 1$$ $(u,v) \notin E \implies d(f(u),f(v)) \ge \alpha$ As α increases, the problem gets harder. $(\alpha > 1)$ is significantly more desirable than $(\alpha \le 1)$. #### Let dim(X) denote the **doubling dimension** of a metric space. <u>Definition</u>: α -preservation dimension of graph G in collection of metric spaces \mathcal{X} $$\dim_{\alpha}(G,\mathcal{X}) := \min\{d > 0 : \exists X \in \mathcal{X} \text{ and } f : V \to X \text{ such that } \dim(X) = d\}$$ $$\dim_{\alpha}(G) \coloneqq \dim_{\alpha}(G, \{\text{all metric spaces}\})$$ **GOAL**: characterize preservation dimension for "realistic" graphs (sparse, clustered, etc.). **IDEA**: constant preservation dimension suggests that 2D/3D visualization is possible! #### Sparsity helps in Euclidean space. For most n-vertex graphs: $$\dim_{\alpha=1}(G,\ell_2) = \Theta(n)$$ Meanwhile, for *any* degree–k graph: $$\dim_{\alpha \le 1+1/\sqrt{k}}(G, \ell_2) \lesssim k^2 \log n$$ (If α exceeds this threshold, ℓ_2 preservation can become impossible!) #### Cluster structure rarely helps. For G sampled from (p > q) planted partition model on n nodes and k components, w. h. p., If $$p = 1$$ and $\alpha \le 1$, $\dim_{\alpha}(G) = \Theta(\log k)$, otherwise... $\dim_{\alpha}(G) = \Theta(\log n)$. #### $(\alpha \le 1)$ - versus $(\alpha > 1)$ -preservation. An interesting phase-change occurs. $\dim_{\alpha \le 1}(G)$ depends on the minimal clique partition of G (NP-hard to compute). a size-2 clique partition $\dim_{\alpha>1}(G)$ depends on the # of distinct neighborhoods in G (often much larger, but easy to compute). #### DISCUSSION - \rightarrow Special cases of α -preservation dimension have been studied before, e.g. $\dim_{\alpha=1}(G,\ell_2)$ = "sphericity". - \rightarrow ($\alpha \leq 1$)-preservation is a strict generalization of $(1/\alpha)$ -distortion embedding. Low-distortion embeddings are well-studied in TCS, but too strict a notion for visualization. - \rightarrow Future work: **algorithms and complexity** of α -preservation; and **approximate** α -preservation: how many edges do need to "sacrifice" to preserve in 2D or 3D?