
Sparsity helps in Euclidean space.
For most n-vertex graphs:

dim!"# 𝐺, ℓ$ = Θ(𝑛)
Meanwhile, for any degree-k graph:

dim!%#&#/ ( 𝐺, ℓ$ ≲ 𝑘$ log 𝑛
(If 𝛼 exceeds this threshold, ℓ! preservation can become impossible!)

Cluster structure rarely helps.
For G sampled from (𝑝 > 𝑞) planted partition
model on n nodes and k components, w.h.p.,

If	𝑝 = 1 and 𝛼 ≤ 1,	 dim! 𝐺 = Θ(log 𝑘) ,
otherwise…	 dim! 𝐺 = Θ(log 𝑛) .

(𝛂 ≤ 𝟏)- versus (𝛂 > 𝟏)-preservation .
An interesting phase-change occurs.
dim!%# 𝐺 depends on the 

minimal clique partition of G
(NP-hard to compute).

dim!)# 𝐺 depends on the
# of distinct neighborhoods in G
(often much larger, but easy to compute).
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Many scientists want to visualize big (say, 100k 
points, 10k dimensions) datasets in 2D or 3D 
plots, and often resort to (unreliable) tools like 
t-SNE and UMAP.

Is it even possible to accurately 
visualize neighborhoods in large, 
structured datasets?

FINDINGS

à Special	cases	of	⍺-preservation dimension have	been	
studied	before,	e.g. dim#$% 𝐺, ℓ& = “sphericity’’.

à (𝛼 ≤ 1)-preservation is a strict generalization of (1/𝛼)-
distortion embedding. Low-distortion embeddings are well-
studied in TCS, but too strict a notion for visualization.

à Future work: algorithms and complexity of ⍺-
preservation; and approximate ⍺-preservation: how many 
edges do need to “sacrifice’’ to preserve in 2D or 3D?

Most graphs are maximally difficult. 
For most* n-vertex G,

dim! 𝐺 ≳
log 𝑛

log 8
𝛼

Sparsity hardly helps in general metrics.
For most n-vertex, k-regular G, 𝑘 = 𝑂(1),

dim! 𝐺 ≳
log 𝑛

log log 𝑛
𝛼

As 𝜶 increases, the problem gets harder.
𝛂 > 𝟏 is significantly more desirable than 𝛂 ≤ 𝟏 .

*most	=	for	all	but	2"#(%) fraction

ground-truth graph 𝐺 = (𝑉, 𝐸)
(representing neighborhoods)

Definition:  A map 𝑓: 𝑉 → 𝑋 is 
an ⍺-preservation of 𝐺 = (𝑉, 𝐸) if

𝒖, 𝒗 ∈ 𝑬 ⟹ 𝒅 𝒇 𝒖 , 𝒇 𝒗 < 𝟏
𝒖, 𝒗 ∉ 𝑬 ⟹ 𝒅 𝒇 𝒖 , 𝒇 𝒗 ≥ 𝜶

𝑓

embedding in 
metric space 𝑋, 𝜌

Let dim 𝑋 denote the doubling dimension of a metric space.
Definition: ⍺-preservation dimension of graph G in collection of metric spaces𝒳

dimA 𝐺,𝒳 ∶=min{𝑑 > 0 : ∃ X ∈ 𝒳 and 𝑓: 𝑉 → 𝑋 such that dim 𝑋 = 𝑑}
dim! 𝐺 ≔ dim!(G, {all metric spaces})

GOAL: characterize preservation dimension for “realistic’’ graphs (sparse, clustered, etc.).  
IDEA: constant preservation dimension suggests that 2D/3D visualization is possible!
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