
Sequential Lightbulb Problem

A Sequential Lightbulb Problem

Noah Bergam njb2154@columbia.edu

Arman Özcan ao2794@columbia.edu

Berkan Ottlik bto2106@columbia.edu

Department of Computer Science

Columbia University

New York, NY 10027, USA

Editor: Alex Andoni

Abstract

The light bulb problem aims to distinguishing correlated vectors among random vectors. In
this report, we summarize existing algorithms and explore a novel sequential formulation of
the light bulb problem. We provide a naive algorithm that uses linear space and a quadratic
number of rounds. We use a bucketing technique, inspired by (Valiant, 2012), to achieve
an algorithm that solves the sequential light bulb problem using constant space and Õ(n)
number of rounds.

Keywords: light bulb problem, learning correlations, k-juntas, fast matrix multiplication

1 Introduction

Distinguishing signal from noise is a fundamental challenge in unsupervised machine learn-
ing. In this report, we review a prototypical problem about learning correlations in the
presence of noise, known as the light bulb problem.

Definition 1 (Light bulb Problem) Given x1, ..., xn ∈ {±1}d and i∗, j∗ ∈ [n] such that:

• ⟨xi∗ , xj∗⟩ ≥ ρd.

• For all i ∈ [n] \ {i∗, j∗} and l ∈ [d], xi,l is an i.i.d. Rademacher random variable.

The goal is to detect (i∗, j∗) (the planted pair) from the rest (the noise vectors).

The idea here is that for large enough d = O(log n/ρ2) (see Claim 1), we have a high-
probability guarantee that the planted pair has the maximum inner product and hence
is distinguishable from the noise vectors. This problem is easily solved in time O(n2d)
by finding the largest off-diagonal entry of XTX where X = (x1, ..., xn). There are two
known routes to obtaining subquadratic time algorithms: locality sensitive hashing and
fast matrix multiplication. The former depends on the correlation ρ and works better for a
highly correlated planted pair; the latter suite of methods is actually independent of ρ and
hence works better for small values.

There is a natural (but to our knowledge, undiscussed) sequential analogue of the light
bulb problem, which we formulate and study in this report.

©2022 Noah Bergam, Arman Özcan, Berkan Ottlik.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-0000.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-0000.html


Bergam, Özcan, and Ottlik

Definition 2 (Sequential Light bulb Problem) Every day t ∈ [T ], the learner observes
xi,t ∈ {±1} for i ∈ [n]. There exists i∗, j∗ ∈ [n] such that E(xi∗ · xj∗) = ρ. For all other
indices, xi,t ∼ Unif(±1) independently, such that E(yi · yj) = 0 for all other j (including j
planted). How many days does it take for the learner to predict (i∗, j∗) with high probability?

This of course, can be solved in a logarithmic number of days by just waiting until
T = O(log n/ρ2), storing the vectors, and then running the offline algorithm. If, however,
the goal is to use limited space, say linear in n, then this approach no longer works. This
is the starting point for our analysis.

The contributions of this report are as follows:

• We review the major ideas behind subquadratic-time algorithms for the light bulb
problem, especially the fast matrix multiplication approaches of (Valiant, 2012) and
(Alman, 2018).

• We analyze the light bulb problem in an online setting. We present a naive algorithm
that uses linear space and quadratic number of rounds; we then analyze an enhanced
algorithm that uses constant space and near-linear number of rounds.

We note briefly that the sequential light bulb problem is well-motivated by empirical
observation. Apparently, when Leslie Valiant came up with the light bulb problem (Valiant,
1988), he was inspired in part by a psychology experiment which showed that, if you flash n
light bulbs over time, all random except for a planted pair that shine together with positive
correlation, a human can pick this up very quickly.

2 Background

For the sake of completeness, we first formalize the feasibility of the light bulb problem.

Claim 1 Fix δ > 0. If d ≥ 1
2ρ

2 log(n2/δ), then with probability 1− δ, the planted pair has
the maximum inner product.

Proof Apply a Chernoff bound. Let x, y be random vectors.

P(x · y > ρd) = P
(1
d

d∑
i=1

xiyi > ρ
)
≤ exp(−ρ2/2d) < δ/n2

Here we use the fact that xiyi ∈ {±1} is a Rademacher random variable, independent over
i. By a union bound over uncorrelated pairs, we have with probability 1 − δ that the cor-
relations between any the random vectors is less than the correlation between the planted
pair. For x a random vector and y a planted vector, the argument is almost identical: since
y is deterministic, x · y is distributed as a sum of Bernoulli random variables.

We proceed to review the connections between the light bulb problem and other funda-
mental learning problems in theoretical computer science. Then we discuss the major fast
matrix multiplication based methods for solving the light bulb problem.

2



Sequential Lightbulb Problem

2.1 Locality-Sensitive Hashing

The light bulb problem is easily recognized as a special case of the approximate closest pair
problem. Since the planted pair has dot product ≥ ρd, the Hamming distance between
them is ∥xi∗ − xj∗∥0 ≤ (1− ρ) · d/2. This is seen by simply decomposing the dot product:

xi∗ · xj∗ = #{entries same} −#{entries different} = d− 2dH(xi∗ , xj∗) ≥ ρd (1)

For uncorrelated vectors, we have Hamming distance between vectors tightly concen-
trated around d/2 (easily checked using a Chernoff argument similar to that in Claim 1).
So the light bulb problem reduces to distinguishing between Hamming distance d/2 and
(1 − ρ)d/2. This can be solved directly using a locality sensitive hash scheme (Indyk and
Motwani, 1998). We recall the definition below.

Definition 3 An (r, cr, P1, P2)-locality sensitive hash (LSH) family H mapping Rd to some
universe U obeys the following rule:

• ∥p− q∥ ≤ r =⇒ Ph(h(p) = h(q)) ≥ P1

• ∥p− q∥ ≥ cr =⇒ Ph(h(p) = h(q)) ≤ P2

Let η = log(P1)/ log(P2) denote the strength of the LSH gap (usually denoted ρ, but we don’t
want notation to overlap).

To solve the light bulb problem, we use a (d/2, (1 − ρ) · d/2, P1, P2) LSH. To find the
closest pair, we first apply the locality sensitive hash to every vector. Then, we iterate
through the each vector and find it’s nearest neighbor. Our LSH will be such that the
size of the universe |U | ≍ nρ. Therefore, for each vector we only need to we only need
to compute its distance to the O(n1−Θ(ρ)) points hashed to the same value. This gives an
overall runtime of O(dn2−Θ(ρ)).

2.2 Connections to other Problem

The light bulb problem is connected to other fundamental problems in theoretical comput-
ing, aside from the approximate closest pair problem. We discuss some of these problems
and sketch the reductions.

Definition 4 (Learning Parities) We are given samples (xi, yi)i∈[d] ⊂ {±1}n × {±1},
generated as follows: each yi = z

∏
j∈S xij where the “noise” zi ∈ {±1} is chosen indepen-

dently of xi with P(zi = 1) = 1− η. How many samples n are needed to predict the “parity
set” S with high probability?

If η = 0, then the problem has a very simple poly-time algorithm: convert to F2 (send
1 → 0 and −1 → 1). Then solve the linear equation r · x = y (where r is the unknown indi-
cator of S) using Gaussian elimination. Once η > 0, the problem exhibits a computational-
statistical gap: efficient algorithms are hard to develop, though a straightforward Chernoff
bound ensures that with m = O(n) samples, the planted parity set S is the only set that
satisfies all the examples.

3



Bergam, Özcan, and Ottlik

The light bulb problem is connected to sparse parities, i.e. when the parity set S is of
size k ≪ n (in this case, we seek to improve on the poly-time brute force over

(
n
k

)
= O(nk)

size-k subsets). This connection is most easily seen for k = 2, S = {j∗1 , j∗2} ⊂ [n]. Given
such an instance of learning parity with noise, if one removes all examples where yi = 1,
then indeed this becomes the light bulb problem over {x∗,j : j ∈ [n]} ⊂ {±1}d (i.e. the
j-indices of the vectors) where xj∗1 and xj∗2 have ρ = 1− 2η correlation.

The problems are in fact equivalent for general small k, in that reductions go both ways.
See (Valiant, 2012) for more details. There is also a known equivalency due to (Feldman
et al., 2006) between learning parties and learning k-juntas, another classic problem in TCS
which we define below.

Definition 5 (Learning k-juntas) A k-junta is a Boolean function f : {±1}n 7→ {±1}
which only depends on k ≪ n of the inputs, indexed by S ⊂ [n]. How many samples
(xi, f(xi)) with xi ∼ Unif({±1}n) are needed to learn S?

2.3 Matrix Multiplication Approaches

(Valiant, 2012) was the first to use fast matrix multiplication to solve the light bulb problem.
There are a few broad motivations for why fast matrix multiplication could help:

• The light bulb problem is clearly a special case of the approximate closest pair problem,
but it has more structure to be exploited. Therefore, even if LSH were optimal for
approximate closest pairs (which is unknown), it seems unlikely that LSH would be
optimal for light bulb.

• The brute-force solution to the light bulb problem is a naive matrix multiplication.

• There are known hardness results for statistical query (SQ) learning for the learning
parities problem, whose sparse version is equivalent to the light bulb problem. Fast
matrix multiplication is a “highly non-SQ” algorithm, in the sense that it mixes
information in a non-localized way.

Runtime Key Idea

Brute Force O(n2d)

LSH O(n2−O(ρ)d)
(Valiant, 2012) O(n1.615 + nd) expand, aggregate, fast matrix mult.

(Karppa et al., 2018) O(n1.582 + nd) simultaneously expand and aggregate
(Alman, 2018) O(n1.582 + nd) polynomial method, easily derandomized

Table 1: A snapshot of the main algorithms for the light bulb problem.

Since Greg Valiant’s breakthrough result, the application of fast matrix multiplication
to this problem has been refined and derandomized. We sample this line of work in the
following few sections.

4



Sequential Lightbulb Problem

2.3.1 Valiant’s Algorithm

The first key observation for Valiant’s algorithm is how matrix multiplication naturally
arises in the light bulb problem. If you package X = (x1, ..., xn), the brute-force approach
to the problem is simply a matter of computing X⊤X and isolating its largest off-diagonal
entry. The problem, of course, is that this matrix multiplication takes Ω(n2) even with fast
matrix multiplication. We can reap the benefits of fast matrix multiplication if we somehow
condense the matrix, and search for correlations between groups of vectors. This gives rise
to the following aggregation construction.

Definition 6 Aggregate the columns of X into n1−α groups of size nα; call these G1, ..., Gn1−α.
Define, for k ∈ [n1−α],

zk =
∑
l∈Gk

xl

We call Z = (z1, ..., zn1−α) ∈ Rd×n1−α
the α-aggregation of X.

Observe that, with probability 1 − o(1), xi∗ and xj∗ lie in separate groups. This is
because the probability of any two vectors landing in the same group is ≈ (nα/n)2 → 0 as
n → ∞. We note that this aggregation preserves the signal but decays its strength. The
following lemma makes this more precise.

Lemma 1 E⟨zi′ , zj′⟩ = ρd if Gi′ , Gj′ split the planted pair; otherwise E⟨zi′ , zj′⟩ = 0. In
general, E⟨zi′ , zj′⟩2 = O(n2αd) .

Proof It suffices to consider the variance term where both of the aggregated vectors contain
completely independent entries (if the planted pair is inside, it only effects one entry).

E⟨zi′ , zj′⟩2 = E
( d∑

k=1

( ∑
l∈Gi′

xlk

)( ∑
r∈Gj′

xrk

))2

= E
( d∑

k=1

( ∑
l∈Gi′

∑
r∈Gj′

xrkxlk

))2

= E
( d∑

k,k′=1

∑
l,l′∈Gi′

∑
r,r′∈Gj′

xrkxrk′xlkxlk′xr′kxr′k′xl′kxl′k′
)

(independence of x’s) =

d∑
k=1

∑
l∈Gi′

∑
r∈Gj′

(xrkxlk)
2 = d · nα · nα = dn2α

E⟨zi′ , zj′⟩ = ρd · 1(i∗ ∈ Gi′ , j
∗ ∈ Gj′) is clear enough (apply linearity of expectation).

Therefore, as long as ρd ≫
√
n2αd, equivalently d ≫ n2α/ρ2, we can find the correlated

columns of Z by isolating the largest off diagonal entry of Z⊤Z. This matrix multiplication
takes time n(1−α)ωpoly(1/ρ), where ω is the exponent of matrix multiplication (note that
the use of fast matrix multiplication is crucial here; for ω = 3 we do not reap benefits

5



Bergam, Özcan, and Ottlik

from this approach). Once we know G′
i, Gj′ that split the planted pair, we can find nearest

neighbors between elements in G′
i and G′

j in time O(n2α).

The problem with this approach is that is requires a much larger dimension than the
d = O(log n/ρ2) dimension that is information-theoretically necessary. The last key ingre-
dient to Valiant’s algorithm is the so-called “XOR/tensor embedding,” which amplifies the
dimension (at the expense of reducing the correlation of the planted pair) such that the
aggregation method concentrates correctly.

The key motivation here is a certain identity relating the tensor power of a vector with
inner products. Recall that, given a vector x ∈ Rd, its nth tensor power (also known as
Kronecker product) x⊗n ∈ Rdn is such that x⊗n

E =
∏

i∈E xi for E is a size n multiset of [d]
(of which there are dn). So the tensor power blows up dimension. Next, we check how it
affects inner products:

⟨x⊗n, y⊗n⟩ =
∑
E

∏
i∈E

xiyi

=
d∑

i1=1

· · ·
d∑

in=1

xi1yi1 · · · xinyin

=
( d∑

i1=1

xi1yi1

)
· · ·

( d∑
in=1

xinyin

)
= ⟨x, y⟩n

The goal in Valiant’s paper is to calculate an approximate tensor power via random
sampling: so we have the benefits of the tensor embedding, without . Let us define this
construction more carefully.

Definition 7 Take X = (x1, ..., xn) ∈ Rd×n and sample m multisets of length q uniformly
and independently, denoted as E1, ..., Em. The (m, q)-approximate tensor embedding

Z = (z1, ..., zn1−α) ∈ Rm×n1−α
is defined as follows:

zi,j =
∏
l∈Ej

xi,l

In expectation, the approximate tensor embedding has a very similar correlation decay
feature as x⊗q.

E⟨zi, zj⟩ = E
m∑
k=1

zikzjk =
m∑
k=1

E
∏
l∈Ek

xilxjl = m · ρq

Note that for m = dq this corresponds precisely to the original tensor product. Recall that
we want m = O(n2α), so for d = O(logm) and q = o(log n) we succeed on this front.

To summarize: modulo some details about concentration and elementary amplification
techniques, Valiant’s algorithm proceeds by: expanding vectors using the XOR embedding,
randomly aggregating vectors, and then running fast matrix multiplication on the aggre-
gated matrix.

6



Sequential Lightbulb Problem

2.3.2 Karppa, Kaski, and Kohonen’s Algorithm

Karppa et al. (2018)’s algorithm is almost identical to that of Valiant (2012), except it
expands and aggregates vectors simultaneously by replacing the uniform random sampling
of dimensions in the (m, q)-approximate tensor embedding with Cartesian product sampling.

First aggregate the columns of X into n1−α groups of size nα; call these G1, ..., Gn1−α .
Draw independently and uniformly at random two m1/2-tuples of elements of [dq/2] and let
I1 and I2 be the two resulting multi-sets of size m1/2. Let I = I1 × I2 be the Cartesian
product of size m with elements that are q tuples in [d]q. We wish to efficiently compute

the compressed matrix Z ∈ Rm×n1−α
consisting of elements

z⃗i,k =
∑
g∈Gk

(x⊗n
g )⃗i

where (x⊗n
g )⃗i denotes the product of the entries of x⊗n

g in i⃗ ∈ I.

z⃗i,k = z(⃗i1 ,⃗i2),k =
∑
g∈Gk

(x⊗n/2
g )⃗i1(x

⊗n/2
g )⃗i2 .

Define Lk ∈ Rm1/2×nα
and Rk ∈ Rm1/2×nα

as l⃗i1,g = (x
⊗n/2
g )⃗i1 and r⃗i2,g = (x

⊗n/2
g )⃗i2 respec-

tively. Observe

(LkR
⊤
k )⃗i1 ,⃗i2 =

∑
g∈Gk

l⃗i1,g r⃗i2,g =
∑
g∈Gk

(x⊗n/2
g )⃗i1(x

⊗n/2
g )⃗i2 = z⃗i,k.

Therefore, to compute Z, for each k ∈ n1−α, we construct each entry of Lk and Rk and com-

pute the product LkR
⊤
k ∈ Rm1/2×m1/2

. This costs us n1−α matrix multiplications with inner
dimension nα and outer dimension m1/2. Valiant’s algorithm requires time O(qmn1−α).
This improvement enables Karppa et al. (2018) to achieve better performance trade-offs
with other steps of the algorithm and improve the overall runtime.

2.3.3 Alman’s Algorithm

Like the aforementioned algorithms, Alman’s proceeds by amplifying vectors in some sense,
aggregating them into groups, running fast matrix multiplication to detect planted groups,
and then running a brute force search over the planted groups. The key innovation here is
in the amplification step: it is best understood in terms of F2 polynomials.

• Let G1, ..., Gn1−α be the random partition into groups of size nα.

• Define the following polynomial:

Cij =
∑
x∈Gi

∑
y∈Gj

axayp(x1y1, ..., xdyd)

where ax, ay ∼ {−1, 1} independently and uniformly at random, and:

p(z1, ..., zn) =
( n∑

i=1

zi

)r

The claim is that if Cij exceeds some judiciously-chosen threshold

7



Bergam, Özcan, and Ottlik

Since the inputs of the polynomial belong to ±1, it can be understood as a polynomial
over F2. Because of this, p is equivalent to its multilinearization: this is obtained by
expressing the polynomial as a sum of monomials and then reducing every exponent modulo
2, such that it becomes linear in all variables. Furthermore, since p is a degree r polynomial,
we can rewrite it in a basis consisting of r-sized subsets of z = (z1, ..., zn). Index this
basis by M1, ...,Mt for t =

(
d
≤r

)
. We can rewrite p(z) =

∑t
s=1 cszMs (and compute this

decomposition efficiently, using a procedure discussed further in Alman (2018)). Since
z = x⊙ y we can decompose this sum quite nicely.

Let α = 1/3. So we have m = n2/3 groups.

Cij =
∑
x∈Gi

∑
y∈Gj

axay

f∑
s=1

cs(x⊙ y)Ms

=
∑
x∈Gi

∑
y∈Gj

axay

f∑
s=1

csxMsyMs

=

t∑
s=1

[
cs

( ∑
x∈Gi

axxMs

)
︸ ︷︷ ︸

Bi,s

( ∑
y∈Gj

ayyMs

)
︸ ︷︷ ︸

Ai,s

]

Hence, C = ABT is the matrix of values we need. For small enough r, the n2/3 dimension
of the matrix multiplication dominates, and we achieve runtime O(n2ω/3+ϵ) for arbitrarily
small ϵ.

A priori, computing the entries of A and B would take time Ω(n2/3 · n1/3 · t) = Ω(n5/3)
time and hence be the bottleneck. They employ the following trick, found in (Karppa et al.,
2018), to get time below O(n2ω/3+ϵ)

• Let N1, ..., Nu be an enumeration of subsets of size ≤ r/2.

Let Li
s,x = xNs and L̃i

s,x = axxNs .

• Compute P i = LiL̃i
T

where P i
s,s′ =

∑
x∈Gi

axxNs∆Ns′ , where ∆ denotes symmetric
difference.

• Every set of size r can be realized as such a symmetric difference; thus each element
Ai,s can be found as an element of P i.

• With u = O(n1/3+ϵ), computing the entries of Li takes O(mugr) = Õ(n4/3+ϵ) while
computing P i takes O(m ·max(u, g)ω) = O(n(2+ω)/3+ϵ)

2.3.4 Generalized Tensor Method

In the paper “Generalizations of Matrix Multiplication can solve the Light Bulb Problem”,
Josh Alman and Hengjie Zhang proposed a new approach to designing faster algorithms
for the light bulb problem by replacing fast matrix multiplication with other tensors that
are generalizations of matrix multiplication, which may contain only some terms of matrix
multiplication and some additional error terms but are computed faster than full matrix

8



Sequential Lightbulb Problem

multiplication. (Alman and Zhang, 2023) They also showed how hashing methods can be
combined with their fast matrix multiplication approach to design even faster algorithms:
while previous matrix multiplication-based algorithms for the light bulb problem have the
same running time regardless of how large ρ > 0 is, their new approach yields algorithms
which are faster as ρ gets larger. To state their main result, one must first define some
terms. Here is a basic linear-algebraic definition of a tensor.

Definition 8 For a vector space V over a field F, a tensor f : V k → F is a k-linear map,
i.e. an element of the dual (V k)∗. It can therefore be written as follows:

f(x1, ..., vn) =
∑

i1,...,in

Ai1,...,in [v1]i1 · · · [vn]in

A matrix is a rank-2 tensor (or, more precisely, they are in one-to-one correspondence1).
The easiest way to see this is through the quadratic form. For M ∈ Rn×m, x ∈ Rn, and
y ∈ Rm, M generates the following bilinear map:

fM (x, y) = xTMy =
∑
i∈[n]

∑
j∈[m]

Mijxiyj

The tensor is determined by the coefficients in the summation. Hence, an alternative way
to view tensors is as formal polynomials where the multiplicity of any variable in a term is
at most 1. One can think of the formal variables as basis elements in the tensor product
vector space. In the above example, we can see xi · yj as (x⊗ y)ij .

Definition 9 One can define a three-dimensional tensor T to represent bilinear problems
that take as input a qi × qk matrix X and a qj × qk matrix Y, and output a qi × qj matrix
Z as follows:

T =
∑

i,i′∈[qi],j,j′∈[qj ],k,k′∈[qk]

T
(
Xi,kYj,k′Zi′,j′

)
·Xi,kYj,k′Zi′,j′

where T
(
Xi,kYj,k′Zi′,j′

)
∈ R is the coefficient of Xi,kYj,k′ in the bilinear polynomial we

output in entry Zi′,j′.

Next, we will define two key properties of a tensor T : rank and efficacy. The latter is a new
property originally introduced by the authors.

Definition 10 A tensor T has rank 1 if it can be written in the form

T =

 ∑
i∈[qi],k∈[qk]

αi,kXi,k

 ∑
j∈[qj ],k∈[qk]

βj,kYj,k

 ∑
i∈[qi],j∈[qj ]

γi,jZi,j


for coefficients αi,k, βj,k, γi,j ∈ R. More generally, the rank of T , denoted rank(T ), is the
minimum nonnegative integer k such that there are rank 1 tensors T1, . . . , Tk with T =
T1 + · · ·+ Tk.

1. Indeed, they are group-isomorphic, where matrix multiplication corresponds to a certain composition of
tensors.

9



Bergam, Özcan, and Ottlik

Rank is a measure of the complexity of a tensor. Upper bounding rank for tensors yield
algorithms for applying that tensor to matrices. For example, Strassen showed in 1969 that
the rank of the tensor ⟨2, 2, 2⟩ for multiplying two 2× 2 matrices is at most 7, and that one
can multiply n× n matrices in time O

(
nlog2 7

)
.

Definition 11 For i ∈ [qi] and j ∈ [qj ], the efficacy of T at (i, j) is defined as:

eff
i,j
(T ) :=

∑
k∈[qk] T (Xi,kYj,kZi,j)√∑

i′∈[qi],j′∈[qj ],k,k′∈[qk] T
(
Xi′,kYj′,k′Zi,j

)2 .
effi,j(T ) is essentially the ratio of the ‘signal’ and the ‘noise’ of T for computing the (i, j)
output entry of matrix multiplication. The efficacy of the whole tensor T is then defined as
the ℓ2 norm of the efficacies of all its output entries:

eff(T ) :=

√ ∑
i∈[qi],j∈[qj ]

(effi,j(T ))
2.

The efficacy of a tensor T turns out to be an important measure for how useful T is for
solving the light bulb problem, as stated in the main theorem below.

Theorem 1 For any tensor T , if

log(rank(T ))

log(eff(T ))
<

2ω

3

then

ωℓ <
2ω

3
.

where w is the smallest real number such that for any ϵ > 0, one can multiply n×n matrices
over a field using O(nw + ϵ) field operations and wl is similarly the smallest real number
such that for any ϵ > 0, one can solve the light bulb problem with n vectors, for any constant
correlation ρ > 0 in time O(nwl+ϵ). If T has negligible aggregation time, then

ωℓ <
log(rank(T ))

log(eff(T ))
.

The aggregation time assumption in the above theorem refers to the initial aggregation
step that is necessary in all matrix multiplication-based light bulb algorithms including
their algorithm. However, this aggregation time can be made negligible, at least for the
tensors that the authors studied, through a technique introduced by (Karppa et al., 2018).

This result gives a way to use an algorithm for almost any bilinear problem T to solve the
light bulb problem, even if T only computes some of the terms of matrix multiplication, and
if T also computes other ‘noise’ terms. Hence, as long as T is easy to compute (rank(T ) is
small) and it has a high ratio of signal to noise for computing matrix multiplication (eff (T )
is large), one can use it to design a fast algorithm for the light bulb computation problem.

10



Sequential Lightbulb Problem

Algorithm Description Although their algorithm involves a number of subtle details,
especially in the case when the tensor T is not ‘symmetric enough’, at a high level it follows
the simple idea of bucketing vectors into groups, as first introduced in Valiant’s paper.
Taking input vectors x1, . . . , xn and y1, . . . , yn and a tensor T , to find the correlated pair
(yj∗ , yj∗), first it makes many copies of each input vector. Then, all these copies for n
different x inputs are mapped into one of qi independently random buckets, and all the
copies for n different y inputs into one of qj independently random buckets. (Note that
qi and qj are the parameters for the size of the input tensor T , but they can be assumed
equal qi = qj = qk = q for simplicity.) By aggregating the vectors in each bucket, the
matrices A and B are formed whose rows are then multiplied by a random sign. Then, the
tensor T is applied to A and B⊺ to ‘multiply’ them to get the matrix C. This procedure is
repeated 100 log n times with fresh inputs to get C1 . . . C100 logn. Finally, if Ck[i, j] is larger
than some optimized threshold for at least 20 log n different k ∈ [100 log n] for some pair
(i, j), that pair is reported as the correlated one. As their analysis shows, if the correlated
pair were mapped into buckets i ∈ [qi] and j ∈ [qj ], then the algorithm succeeds as long
as effi,j(T ) is large enough, which happens with high probability as i and j are picked
uniformly randomly.

Locality-Sensitive Hashing and Tensor T2112 As the tensor T is faster to compute
than full matrix multiplication, the algorithm is already fast. However, the authors im-
proved the algorithm even more by combining it with locality-sensitive hashing. The main
idea is to place the vectors into buckets using (a variation on) bit sampling locality-sensitive
hashing, instead of uniformly random hashing. Thinking of the buckets as {1, 1} bit strings,
the planted pair with correlation ρ > 0 will be likely put into buckets i ∈ {1, 1}log2 qi and
j ∈ {1, 1}log2 qj which also have correlation close to ρ. If these buckets have larger effi,j(T )
than uniformly random buckets, then one can speed up the algorithm.

In fact, the new tensor the authors propose in the paper, named T2112, has this property.
This tensor is defined as:

T2112 = (X1,1Y1,1 +X1,2Y2,1 +O(ϵ))Z1,1 + (X1,2Y2,2 +O(ϵ))Z2,1

+(X2,1Y1,1 +O(ϵ))Z1,2 + (X2,1Y1,2 +X2,2Y2,2 +O(ϵ))Z2,2

As the authors showed, this tensor T2112 has rank 5 and efficacy
√
6−O(ϵ2), which makes

it ideal to use. 2 The other nice property of this tensor is that the efficacy of the buckets
of correlated pairs increase with ρ, resulting in a faster algorithm. As for the analysis,
after taking a Kronecker power of T2112 (so that qi = qj = q are larger than 2), the
resulting tensor has the property that, for buckets i, j ∈ {−1, 1}log2(q) with correlation ρ,

we have effi,j

(
T
⊗ log2(q)
2112

)
= 2(1+ρ)(log2(q)/2), whereas the median pair i, j of buckets only

has effi,j

(
T
⊗ log2(q)
2112

)
= 2log2(q)/2.

Running the algorithm with the tensor T2112 and with uniformly random hashing leads
to the runtime O(1.797) for lightbulb problem as ϵ in T2112 goes to infinity, as Theorem 1

2. Technically, the border rank of T2112 is 5: As ϵ approaches 0 in T2112, this ‘border rank’ of the 6 of the
8 terms becomes 5. However, since border rank bounds can be used instead of rank using the technique
introduced by Bini (Bini, 1980), one can just define rank of T2112 as 5

11



Bergam, Özcan, and Ottlik

suggests. The algorithm gets even faster after applying a locality-sensitive hashing scheme,
as stated in the following theorem.

Theorem 2 For the tensor T2112, locality-sensitive hashing method improves the bound of
Theorem 1 to

ωℓ ≤


2 log 5

log(6(1−ρ))ρ/2(1+ρ)ρ/2(1−ρ2)1/2
) when ρ < 1/3

4 log 5
(5+ρ) log 2 when 1/3 ≤ ρ ≤ 1

which shows that the runtime can be made better as ρ gets larger.

3 Sequential Lightbulb Problem

In this section, we study the lightbulb problem in a sequential setting. This is arguably a
more natural notion of the problem, when we consider the motivation. Since this is new
material, our analysis is more detailed.

Recall that, in the sequential lightbulb problem, are [n] lightbulbs, i.e. sequences of
Rademacher random variables Yi = (yt,i)t∈N that are independent for each t. There exists
i∗, j∗ such that E(yt,i∗yt,j∗) = ρ for each t. For all other indices, yi,t ∼ Unif(±1) indepen-
dently. So E(yt,iyt,j) = 0 for all other pairs (even where one is planted).

3.1 Naive Algorithm

The simplest approach to the sequential lightbulb problem is to keep a counter for each
lightbulb, and increment (or decrement) that counter based on how many vectors it matches
in that round. We expect the counters for the planted pairs to grow at a faster rate than
those for the random vectors.

• Learner maintains n counters for each lightbulb, c1 = (c1,1, ..., c1,n) = 0⃗.

• Every day t = 1, 2, 3, . . . , T :

– Learner observes yi,t ∈ {±1} for all i ∈ [n].

– For each i, update ct+1,i = ct,i +
∑n

j=1,j ̸=i yt,iyt,j

• Learner predicts (̂i, ĵ) to be the indices with the highest absolute-value counters.

Lemma 2 If T = Ω(n2/ρ2) then the algorithm succeeds with high probability.

Proof Observe that the counter becomes a

cT,i =

T∑
t=1

n∑
j=1,j ̸=i

yt,iyt,j

=
n∑

j=1,j ̸=i

T∑
t=1

yt,iyt,j =
n∑

j=1,j ̸=i

⟨yi, yj⟩

12



Sequential Lightbulb Problem

Therefore, E[cT,i] = 0 for all non-planted light bulbs i and E[cT,i] = ρT for the planted light
bulbs i. More succintly, E[cT,i] = ρT · 1(i ∈ {i∗, j∗}).

To compute the variance, one could think of cti as the position of a simple random
walker, whose each step for some j and t being yt,iyt,j , which is +1 with probability 1/2
and -1 with probability 1/2 as long as i or j is not planted. Therefore, for any non-planted
lightbulb i, cT,i is the position of the random walker after (N − 1)T random symmetric
steps. Denoting each independent step as Xk for k ∈ [(N − 1)T ], the variance for cT,i for
non-planted lightbulb i is given by:

Var[cT,i] = E[c2T,i]− E[cT,i]2 = E[c2T,i] = E

(N−1)T∑
k=1

Xk

2
= E

(N−1)T∑
k=1

(N−1)T∑
l=1

XkXl


=

(N−1)T∑
k=1

(N−1)T∑
l=1

E [XkXl]

= (n− 1)T +
∑
k ̸=l

E [XkXl] = (n− 1)T < nT

For planted cT,i∗ and cT,j∗ , at every step t, there are now n − 2 random symmetric steps
and one positive expectation (ρ) step, yt,i∗yt,j∗ . Note that

E(yt,i∗yt,j∗) = Pr[yt,i∗yt,j∗ = 1]− Pr[yt,i∗yt,j∗ = −1] = 2Pr[yt,i∗yt,j∗ = 1]− 1 = ρ

Therefore, Pr[yt,i∗yt,j∗ = 1] = ρ+1
2 for all t and recall that each yt,i∗yt,j∗ for different t are

independent. Then, let X1 = yt1,i∗yt1,j∗ and X2 = yt2,i∗yt2,j∗ for some t1 and t2. Then,

E [X1X2] =

(
ρ+ 1

2

)2

+

(
1− ρ

2

)2

− 2

(
ρ+ 1

2

)(
1− ρ

2

)
=

ρ2 + 2ρ+ 1

4
+

1− 2ρ+ ρ2

4
+

2ρ2 − 2

4
=

4ρ2

4
= ρ2

Therefore, using the same notation as above, the variance for cT,i∗ or cT,j∗ is:

Var[cT,i∗ ] = E[c2T,i∗ ]− E[cT,i∗ ]2 = E[c2T,i]− ρ2T 2 =

(N−1)T∑
k=1

(N−1)T∑
l=1

E [XkXl]− ρ2T 2

= (n− 1)T +
∑
k ̸=l

E [XkXl]− ρ2T 2

= (n− 1)T + ρ2T (T − 1)− ρ2T 2

= (n− 1)T − ρ2T < nT

So if T ≫ n2/ρ2, then with high probability, the cT,i∗ or cT,j∗ will be largest. More explicitly,
by Chebyshev, for i unplanted:

P(|cT,i| ≥ ρT/2) ≤ 4nT

ρ2T 2
=

4n

ρ2T

13



Bergam, Özcan, and Ottlik

With a union bound, we have:

P(∃i ∈ [n], |cT,i| ≥ ρT/2) ≤ 4n2

ρ2T

For i = i∗ planted, we have:

P(|cT,i∗ | ≤ ρT/2) ≤ P
(∣∣∣|cT,i∗ | − ρT

∣∣∣ ≥ ρT/2
)
≤ 4n

ρ2T

Setting T = Θ
(
n2/ρ2

)
, the algorithm will correctly find the correlated pair with a desired

small constant probability.

3.2 Recursive Bucketing (Process of Elimination) Algorithm

In order to mitigate the number of rounds, we could bucket the vectors and then, after a
certain number of rounds, narrow down the buckets of interest. This allows us to achieve
sub-quadratic number of rounds and still linear space.

• Every epoch s = 1, ..., S:

– Let Ls be the set of remaining light bulbs with |Ls| = ns.

Split randomly into ms = n1−α
s groups of size nα

s , call them G1, ..., Gms .

Initialize ms counters, c1 = (c1,1, ..., c1,ms) = 0⃗.

– Every day t = 1, .., Ts:

∗ Learner observes yt,i ∈ {±1} for i ∈ [n].

∗ For each j ∈ [ms], update:

ct+1,j = ct,j +
∑
l∈Gj

∑
k∈[ms]\{j}

∑
r∈Gk

yt,lyt,r

– Take cTs,j1 , cTs,j2 the largest counters.

Let Ls+1 = Gj1 ∪Gj2 and start next epoch.

Claim 2 After every epoch, if we start with ns lightbulbs, we end with 2nα
s lightbulbs. So if

we start with n lightbulbs, then ns = 21/(1−α)nαs
. After S = O( log log(n)log(1/α) ) rounds, we reduce

to a constant number of lightbulbs, at which point a constant number of rounds of the basic
algorithm reveals the planted pair (assuming the planted pair was not lost).

Claim 3 With each epoch, the probability of placing the lightbulbs in separate groups is
1− (nα

s /ns)
2 = 1− (1/n2−2α

s ).

Claim 4 After every epoch, with Ts ≥ Ω(n2−α
s /ρ2) and total runtime Ts · n1−α

s · nα
s · n1−α

s ·
nα
s = Tsn

2
s and space usage n1−α

s , we maintain the planted pair for the next epoch with
constant failure probability.

14



Sequential Lightbulb Problem

Proof Let ỹj =
∑

l∈Gj
yl for j ∈ [ms]. Using similar analysis to the previous lemma:

cT,j =

T∑
t=1

∑
l∈Gj

∑
k∈[ms]\{j}

∑
r∈Gk

yt,lyt,r

=
∑

k∈[ms]\{j}

∑
l∈Gj

∑
r∈Gk

⟨yl, yr⟩

=
∑

k∈[ms]\{j}

〈 ∑
l∈Gj

yl,
∑
r∈Gk

yr

〉
=

∑
k∈[ms]\{j}

⟨ỹj , ỹk⟩

If Gj contains the planted pair, cT,j has expectation ρT ; otherwise, it has expectation zero.

E[cT,j ] = ρT · 1({i∗, j∗} ∩Gj ̸= ϕ)

As for variance, we get nsTs variance for each counter. We do the analysis for all random
vectors (as with the earlier algorithm, having the planted pair does not make much of a
difference).

E[c2T,j ] =
∑

k∈Ls\Gj

E[⟨ỹj , ỹk⟩2]

=
∑

k∈Ls\Gj

( Ts∑
t=1

∑
l∈Gj ,r∈Gk

yt,lyt,r

)2

(independence) =
∑

k∈Ls\Gj

Ts∑
t=1

∑
l∈Gj

y2t,l

= n1−α
s · Ts · nα

s = nsT

From here, we use the same Chebyshev type analysis as before, except now the union bound
is over n1−α. So we need Ts = Ω(n2−α

s /ρ2) per epoch.

Combining the above claims shows us that the bucketing algorithm solves the sequential
light bulb problem with:

• Space-per-round: O(n1−α)

• Runtime-per-round: O(n2)

• Rounds: O
(
log log(n)
log(1/α) · n2−α

)
= Õ(n2−α)

Taking α = 1− C
log(n) for a constant C gives us constant and Õ(n) rounds (the number-of-

epochs term remains a poly-logarithmic factor).

15



Bergam, Özcan, and Ottlik

4 Discussion

In this work, we studied a novel sequential version of the light bulb problem, and we
developed an algorithm that uses constant space and runs in a near-linear number of steps.
It is worth asking how much better we can do.

One direction of growth could be to apply a tensor-embedding in an online fashion.
Perhaps the learner keeps track of a random constant-sized window of elements from the
past with which it generates synthetic examples. While this would enforce at least linear
memory usage, it could potentially decrease the number of rounds.

Acknowledgments and Disclosure of Funding

The authors would like to thank Alex Andoni for his feedback in the writing process.

References

Josh Alman. An illuminating algorithm for the light bulb problem. arXiv preprint
arXiv:1810.06740, 2018.

Josh Alman and Hengjie Zhang. Generalizations of matrix multiplication can solve the
light bulb problem. In 2023 IEEE 64th Annual Symposium on Foundations of Computer
Science (FOCS), pages 1471–1495. IEEE, 2023.

Dario Bini. Border rank of ap× q× 2 tensor and the optimal approximation of a pair of
bilinear forms. In International Colloquium on Automata, Languages, and Programming,
pages 98–108. Springer, 1980.

Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. New
results for learning noisy parities and halfspaces. In 2006 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’06), pages 563–574. IEEE, 2006.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory
of computing, pages 604–613, 1998.

Matti Karppa, Petteri Kaski, and Jukka Kohonen. A faster subquadratic algorithm for
finding outlier correlations. ACM Transactions on Algorithms (TALG), 14(3):1–26, 2018.

Gregory Valiant. Finding correlations in subquadratic time, with applications to learning
parities and juntas. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science, pages 11–20. IEEE, 2012.

Leslie G Valiant. Functionality in neural nets. In Proceedings of the Seventh AAAI National
Conference on Artificial Intelligence, pages 629–634, 1988.

16


	Introduction
	Background
	Locality-Sensitive Hashing
	Connections to other Problem
	Matrix Multiplication Approaches
	Valiant's Algorithm
	Karppa, Kaski, and Kohonen's Algorithm
	Alman's Algorithm
	Generalized Tensor Method


	Sequential Lightbulb Problem
	Naive Algorithm
	Recursive Bucketing (Process of Elimination) Algorithm

	Discussion

