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Problem

Detecting correlations amidst noise is a fundamental problem

in machine learning and statistics. The lightbulb problem [6]

explores this problem in a simple Boolean vector setting:

Lightbulb Problem (LBP):

Setup: Given x∶,1, . . . , x∶,n ∈ {−1, 1}T . All are independently
and uniformly random except the planted pair of vectors,

where x∶,i∗ ⋅ x∶,j∗ ≥ ρT for some ρ ∈ (0, 1).
Goal: find the correlated pair (i∗, j∗) efficiently → low

runtime.

Consider a sequential version of the problem, where the learner

receives the entries of the vectors one-by-one.

Sequential Lightbulb Problem (SLBP):

Setup: Every day, the learner observes on/off “lightbulbs”

xt,∶ = (xt,1, ..., , xt,n). Each xi,t lightbulbs are independent

and uniformly random except two planted bulbs i∗, j∗ for
which E(xt,i∗xt,j∗) = ρ for each t.

Goal: find the correlated pair (i∗, j∗) efficiently→ low space

think streaming.

Observation: Any algorithm for the LBP can be used to solve

SLBP. However, existing algorithms for LBP require linear space,

and all matrix mult-based approaches require super-linear space.

Question: Can we solve SLBP with sublinear space?

What is the tradeoff between space and number of

rounds?

PreviousWork

LBP is a special case of Hamming closest pair, which can be

solved using locality sensitive hashing [2] in O(n2−Θ(ρ)) time.

The runtime advantage decays with the magnitude of planted

correlation. Greg Valiant [5] was the first to develop a sub-

quadratic algorithm for the lightbulb problem where the expo-

nent is independent of ρ. The method was based on fast matrix

multiplication. Furtherwork by [1] and [3] reduced the exponent

and derandomized the algorithm.

[4] discussed SLBP but didn’t consider low-space algorithms.
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Algorithm 0: Naive Counter, O(n) space

Upshot: Simple way to achieve linear rounds.

Idea: Maintain counter for each lightbulb that counts howmany lightbulbs

it agrees with over time. Planted pair will likely have highest counts.

Learner maintains n counters for each lightbulb, c1 = (c1,1, ..., c1,n) = 0⃗.
Every day t = 1, 2, 3, . . . , T :

Learner observes yi,t ∈ {±1} for all i ∈ [n]. Let St = ∑n
j=1 yt,j

For each i, update ct+1,i = ct,i + yt,i(St − yt,i)
Learner outputs (î, ĵ) indices of highest absolute-value counters.

Lemma 1: After O(n log(n)/ρ2) rounds, the highest-value counters

correspond to the planted lightbulbs with high probability.

Algorithm 1: Elimination, O(n1−α) space

Upshot: Using a simple bucketing technique, we can toggle between

space per round and number of rounds.

Idea: Group lightbulbs and run naive counter on the groups.

Keep the top 2 groups and rerun until we can brute force.

For every epoch s = 1, ..., S:

Let ns be the number of remaining lightbulbs.

Split randomly into ms = n1−α
s groups of size nα

s .

Initialize ms counters, one per group.

For t = 1, ..., Ts: increment the counters as in the naive algorithm,

but aggregated over the groups.

At round Ts, eliminate all but the two highest-count groups.

Lemma 2: With high probability, in each “epoch,” the chosen buckets

keep the planted lightbulbs. Furthermore, the process terminates in

O(log(log n)/ log(1/α)) epochs, with O(n1+α) rounds per epoch.

Algorithm 2: Heavy Hitters, O(log n) space

Upshot: achieves constant space.

Idea: Suppose you maintain n2 counters, one for each pair of vectors

(studied in [4]). Then easily this is solved in T = O(log n) rounds, since
w.h.p., planted pair will have dot product > ρT /2 and the other entries

< ρT /2. In algorithm 2, run enough rounds until the planted pair becomes

not just the maximum entry, but a φ-heavy hitter for some φ = Θ(1).

Lemma 3: After O(n2 log n) rounds, the planted pair index will be a 0.5-
heavy hitter. A CountMin sketch will output this entry using O(log n/φ)
words of space.

Summary of Results

Algorithm Space (words) Rounds Time/round

Alg 0: Naive O(n) O(n log(n)/ρ2) O(n)
Alg 1: Elim(α) O(n1−α) O(n1+α log(n)/ρ2) O(n)
Alg 2: HH O(1) O(n2 log(n)/ρ2) O(n)
Alman [1] O(n1.43) O(log(n)/ρ2) O(n1.43)

LSH O(n log(n)) O(log(n)/ρ2) O(n2−Θ(ρ))

Table. Comparison of our online algorithms with naive applications of the

standard offline algorithms.

Future directions

Both SLBP and LBP require T = Ω(log(n)/ρ2) rounds to achieve

any fixed failure probability. This is related to established lower

bounds for the Gap Hamming problem.

We would like to understand the tradeoff between space and

number of rounds. Here is one basic conjecture to that end:

Conjecture: SLBP cannot be solved with o(n) words of space
and O(log n) rounds.

We could also try to give a lower bound on some function of the

space and rounds. For instance, the tradeoffs observed in our

algorithms suggests something like [space] × [rounds] = Ω̃(n2).
Proving these tradeoffs would probably involve ideas from com-

munication complexity. However, the standard two-player com-

munication reduction used for the turnstile streaming model

(Alice has the first half of the sequence, Bob has the second

half) would not work due to the randomized nature of the data

stream.
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