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Noah Bergam

Abstract

This thesis is a review of algorithms and statistical complexity results for the manifold
intrinsic dimension (ID) estimation problem. The task is as follows: given an i.i.d. sample
of points from a low-dimensional submanifold embedded in high-dimensional Euclidean
space, determine the dimension of the submanifold. This problem is of key interest in
data science, as many algorithms can be made to depend on the intrinsic dimension of
data, rather than the dimension of its ambient space. We pay close attention to the linear
case of this problem, which reduces to principle component analysis (PCA). In the general
manifold case, the kinds of approaches become much more diverse. We distinguish two
very different kinds of methods: (1) those which isolate a local statistic (e.g. number of
neighbors within a certain radius) and analyze its scaling behavior in varying neighborhood
sizes; and (2) those which analyze a global statistic and its scaling behavior independent
of local information (e.g. the Wasserstein distance between two independently-formed
empirical distributions, and how it scales with the size of their samples). We then compare
lower bounds on the sample complexity of ID estimation, in a model with noise and a model
without.
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Chapter 1

Introduction

High-dimensional, high-volume data is increasingly abundant in the natural and social sci-
ences. Finding the right representation or encoding of such data is of fundamental interest
in unsupervised machine learning and data science writ large. Ideally, this representation
is a reduction in some sense, making the dataset smaller while preserving important in-
formation. For instance, to reduce the number of data points, one could apply k-means
and represent the dataset in terms of cluster centers; or to reduce dimension, one could
pursue a principal component analysis (PCA) or Johnson-Lindenstrauss (JL) transform
to project the data onto a low-dimensional linear subspace. These kinds of reductions
are useful for both algorithmic applications (e.g. nearest neighbor search) and scientific
interpretation (e.g. data visualization).

Making such data reductions often comes with (heavy) assumptions regarding the
generative process behind the dataset. For instance, the original expectation-maximization
(EM) algorithm is designed for data generated from a mixture of Gaussians; and PCA is
best-suited for data which lies on a linear subspace (or, better yet, data which is sampled
from a probability distribution supported on a linear subspace).

As a generalization of PCA, one might consider data generated from a “nonlinear
subspace,” or more precisely, an embedded submanifold of Euclidean space. Assuming
a dataset has such a structure is often called the manifold hypothesis, and the task of
learning this structure is often called manifold learning. One major problem in manifold
learning––the topic of this thesis––is estimating the dimension of a data-generating mani-
fold. We refer to this as the intrinsic dimension (ID) estimation problem, and we introduce
some general parameters for the problem as follows:

Definition 1 (ID estimation problem). Let M ⊂ RD be a d-dimensional Riemannian
manifold embedded in RD (with d≪ D presumably), such that:

• The manifold is bounded, say M ⊂ [0, 1]D,

• The reach of the manifold (a proxy for curvature) is bounded, i.e. τ(M) < T

• The volume is bounded vol(M) < V .

Let µ be a probability distribution supported on M. Design an efficient algorithm that
takes in n i.i.d. samples from µ and returns an estimator d̂n ∈ [D] such that d̂n = d with
high probability.
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This thesis reviews major results and frames important open questions regarding this
problem of ID estimation. We proceed in three steps:

• Background: First, we review the necessary background in dimensionality reduc-
tion and differential geometry literature. We transition from the data scientific
problem motivating manifold learning to the mathematical foundations needed to
rigorously discuss and prove guarantees for manifold learning.

• Algorithms: Then, we review various estimators, focusing on their intuition, imple-
mentation, and algorithmic guarantees. We split methods into two rough categories:
local methods, which examine the behavior of the data in neighborhoods, and global
methods, which make use of the whole structure of points.

• Complexity: Then, we discuss the statistical complexity of intrinsic dimension
estimation. We investigate how the presence of noise has a substantial difference on
the convergence rate of dimension estimators.

This thesis assumes a strong grasp of linear algebra and basic statistics. Background
in topics like differential geometry, probability theory (empirical process theory), and
machine learning is generally helpful but not entirely necessary.
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Chapter 2

Review of Manifold Learning

We begin with a brief review of dimensionality reduction techniques: starting with lin-
ear methods and then easing into nonlinear methods. Throughout this discussion, let
X = [x1, ..., xn] ∈ RD×n denote a dataset. Let Ei∼[n]f(xi) = 1

n

∑n
i=1 f(xi) (i.e. let the

expectation be taken over a uniform measure on the dataset). Let D denote the dimension
of the ambient space and d denote the dimension of the manifold or the embedding output
by some manifold learning algorithm. We assume throughout that d≪ D.

2.1 Linear Dimension Reduction

Linear dimension reduction is about finding a linear subspace that minimizes some sort
of reconstruction error or distortion over data points. PCA is a canonical example of
minimizing average-case distortion, while JL is a canonical example of dimension reduction
posed in terms of worst-case distortion

Best-Fitting Subspace and PCA The most natural and arguably most well-understood
objective for dimension reduction is the task of finding the best-fitting linear subspace of
some fixed lower dimension. We can formulate this as follows: let AD×d denote the set
of D × d orthogonal matrices, i.e. ATA = Id. The idea here is that the columns of U
provide an orthonormal basis for our d-dimensional subspace. It is easy to check that
AAT is the matrix that projects our data onto this d-dimensional subspace; the algebraic
property of projection follows simply from (AAT )2 = A(ATA)AT = AAT . So our subspace
approximation problem becomes:

argmin
A∈AD×d

n∑
i=1

∥AATxi − xi∥22 = argmin
A∈AD×d

∥AATX −X∥2

It turns out that there are efficient algorithms for computing such an orthoprojector ,
which are effectively based on eigendecomposition calculations. It goes by two names.

• Principal Component Analysis: Take A where the d columns are the top d
eigenvectors (i.e. highest eigenvalues) of the covariance matrix 1

nXX
T ∈ RD×D.

• Singular Value Decomposition: Take A where the d columns are the top d left
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singular vectors of X, i.e. if X =
∑n

i=1 σiuiv
T
i with σi in descending order then

A = [u1, ..., ud].

Here is a simple way of arguing that SVD and PCA recover the best-fitting subspace
(albeit one that relies on some heavy machinery). Rewrite the loss as follows:

n∑
i=1

∥UUTxi − xi∥22 = ∥UUTX −X∥F

where ∥A∥F =
√∑

i,j A
2
ij denotes the Frobenius norm of a matrix. By the Eckart-Young

theorem1, the best rank-d approximation of X is given by the d-rank truncation of the
singular value decomposition of X, call this X̂d. Our rank-d approximation is precisely
the the projected AATX. Setting these equal, we have:

X̂d =

d∑
i=1

σiuiv
T
i =

D∑
i=1

σi

(
AATui

)
vTi = AATX

Equality is achieved for AATui = ui · 1(i ≤ d). This is accomplished precisely when AAT

projects onto span(u1, ..., ud), i.e. when A = [u1, ..., ud].
Observe that the left singular vectors of X are precisely the eigenvectors of XXT and

the singular values of X are the square root of the eigenvalues of XXT . This follows from
XXT = UΣV T (UΣV T )T = UΣV TV ΣUT = UΣ2UT . This factorization is precisely an
eigendecomposition. With this, we have shown how linear subspace approximation reduces
to an eigenvalue problem. This is an important fact that will continue to show up in
our discussion of manifold learning. The following correspondence will also be useful, e.g.
when discussing spectral clustering.

Theorem 1. Let A ∈ RD×d and X ∈ RD×n.

argmin
ATA=I

∥AATX −X∥ = argmax
ATA=I

tr
(
AT

(
XXT

)
A
)

Proof. It suffices to show that the solution to the RHS is given by the A whose columns are
the top d eigenvectors of XXT . Let ai be the columns of A, so {a1, ..., ad} is orthonormal.
Note that XXT is symmetric and PSD. Let {u1, ..., uD} denote its set of eigenvectors in
decreasing order of eigenvalue λ1 ≥ ... ≥ λD ≥ 0.

tr
(
AT

(
XXT

)
A
)
=

d∑
i=1

aTi (XX
T )ai =

d∑
i=1

aTi

( D∑
j=1

λiuiu
T
i

)
ai

1Stated formally: Take A ∈ Rn×m and let Ak be the kth order SVD truncation of A. Then ∥A−Ak∥F ≤
∥A−B∥F for all B ∈ Rn×m.
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Let ai =
∑D

j=1 cijuj . Then we have:

d∑
i=1

( D∑
j=1

cju
T
j

)( D∑
k=1

λkuku
T
k

)( D∑
l=1

cilul

)
=

d∑
i=1

D∑
j=1

D∑
k=1

D∑
l=1

λkcijcil(u
T
j uk)(u

T
k ul)

=

d∑
i=1

D∑
j=1

c2ijλj

Recall, since ∥ai∥ = 1, that
∑D

j=1 c
2
ij = 1. So naturally, we want to place all of this mass

in λ1, the largest eigenvalue. But we also need to have {ai} orthogonal. So the optimal
allocation is to let c11 = c22 = ... = cdd = 1 and all else zero. Hence, ai = ui for i ∈ [d].

One can consider the more general subspace approximation problem Subspace(k, p) =
minU∈Uk

∑n
i=1 ∥UUTxi − xi∥p2 where one adds up the pth powers of the Euclidean norm.

Clearly, for p = 2, exact optimization can be done in polynomial time. For all p >
2, [DTV11] was able to show a constant factor approximation scheme which is nearly
tight under the Unique Games Conjecture (i.e. it is impossible to construct a better
approximation in polynomial time).

Random Projection Perhaps the simplest conceivable method for dimension reduction
is random projection, i.e. sample a random matrix R ∈ Rd×D such that {Rxi} resembles
{xi} with high probability. What should be our criterion for resemblance? With this
introduction of randomness, it is no longer reasonable to enforce that Rxi and xi are
close together. One can observe however, that if you provide enough dimensions for
the projection, the interpoint distances do not change very much. Indeed, for O(log n)
dimensions, one can guarantee the existence of a map such that the worst-case distortion
factor is always within 1± ϵ.

Theorem 2 (Johnson-Lindenstrauss Lemma). For any {xi}i∈[n] ⊂ RD there exists R ∈
Rd×D with d ≥ O(log(n)/ϵ) such that:

∥Rxi −Rxj∥
∥xi − xj∥

∈ (1− ϵ, 1 + ϵ) ∀i ̸= j ∈ [n]

There are numerous methods for producing such a matrix R. Perhaps the simplest, as
outlined in [DG03], is taking iid Gaussian entries in the matrix. There are many variants,
including sparse JL transforms [DKS10; KN14]. There is also a rich theory of random
projection on manifolds, as opposed to point cloud data.

2.2 Nonlinear Dimension Reduction

In their review of manifold learning, [MZ23] distinguishes between “one-shot” embedding
algorithms as opposed to “cost-minimization” embedding algorithms. This should not,
however, distract from the fact that the major “one-shot” algorithms minimize an cost
functions. It just so happens that the minimization of such objectives consistently reduces
to eigendecomposition.
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In all of the following problems, one should imagine being given a finite metric D ∈
Rn×n, possibly derived from some dataset X = [x1, ..., xn] ∈ RD×n and wanting to output
some low-dimensional collection of points Y = [y1, ..., yn] ∈ Rd×n.

Multidimensional Scaling (MDS) The classical formulation of the multidimensional
scaling problem is as follows: say you are given the interpoint distances between n points in
Rd, packaged in an n×n matrix D. Given such a Euclidean embeddable finite metric space,
how do you recover a corresponding set of points, i.e. (x1, ..., xn) such thatDij = ∥xi−xj∥2
for all i, j ∈ [n]? This turns out to a a straightforward task, based on the following fact:

Theorem 3. Let D ∈ Rn×n. Then D is Euclidean embeddable if and only if the Gram
matrix B = −1

2HDH is positive semidefinite. Furthermore, if D is Euclidean embeddable,
then B = XTX where X = [x1, ..., xn] ∈ Rd×n is a point set such that ∥xi − xj∥ = dij.

The key idea here is that ∥xi − xj∥2 = ⟨xi, xi⟩ + ⟨xj , xj⟩ − 2⟨xi, xj⟩. Written more
suggestively, we have:

−1

2
(d2ij − x2i − x2j ) = ⟨xi, xj⟩

The right hand side is clearly the (i, j) entry of XTX. The work of the proof comes down
to showing the left-hand side is the corresponding entry of the double-centered matrix
−1

2HDH. Hence, if we have a Euclidean embeddable squared interpoint distance matrix,
we can retrieve the embedding X as follows:

• GivenD: Compute B = −1
2HDH. Compute its spectral decomposition B = UTΛU .

Let [Λ+]ij = max{Λij , 0}. Let X = UΛ+. Return [X]n×d (i.e. take first d columns).

We can view the efficacy of this algorithm once again from the lens of Eckart-Young.
Rewrite the optimization in matrix form:

min
x1,...,xn∈Rd

∑
i,j

(
D2

ij − ∥xi − xj∥2
)2

= min
X∈Rd×n

∥∥∥− 1

2
HDH −XTX

∥∥∥
F

The best rank-d approximation to B = −1
2HDH is given by its rank-d singular value

decomposition B̂d. So we want to find XTX = B̂d. First of all, this is only possible if B
and hence B̂d was PSD, since XTX is PSD. But if it is, then the aforementioned algorithm
recovers precisely the right matrix.

One can generalize MDS in a number of ways: in particular, exploring different cost
functions. For instance, consider the Kamada-Kawai MDS objective (in the matrix for-
mulation, note that the division of matrices is done elementwise).

min
x1,...,xn∈Rd

∑
i,j

(
1− ∥xi − xj∥

Dij

)2
= min

X∈Rd×n

∥∥∥11T − XTX

D

∥∥∥
F

The Kamada-Kawai objective is often used in force-based graph drawing. It is an
active study of research in geometric optimization. [Dem+21] recently showed that this is
NP-hard to minimize exactly but admits a randomized poly-time approximation scheme,
which was later improved by [Bak+23].
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Open Problem 1. Does stochastic gradient descent with enough random restarts have
provable guarantees for minimizing the (highly non-convex) Kamada-Kawai objective?
Posed by [Dem+21]; the idea being that, if the greedy discretized optimization method
has such a guarantee, so too should the greedy continuous optimization.

Isomap Isomap, developed by [TSL00], is a portmanteau for isometric mapping (the
reason for this name will become apparent). Isomap is effectively a clever application of
MDS, where the key insight comes down to preprocessing. Suppose we have data lying
on a manifold of known dimension. Due to the locally Euclidean nature of manifolds, the
Euclidean distance is a good approximation for the actual geodesic distance metric on the
manifold itself. This approximation falls apart for larger distances, but there is a remedy: if
you construct a nearest-neighbor graph and compute the shortest path (e.g. with Djikstra’s
or Floyd’s algorithm) along neighbors, then the sums of these small Euclidean distances is
a better approximation for the geodesic distance along the manifold. Then, you could plug
in these approximate geodesic distances into MDS and use the corresponding embedding.

Y ∗
isomap = min

Y ∈Rd×n

∥∥∥− 1

2
H[D

(X)
geodesic]H − Y TY

∥∥∥
D

(X)
geodesic = min

P∈P

∑
(i,j)∈P

∥xi − xj∥2 P = {paths in adjacency matrix of X}

Later in this chapter we will discuss a consistency theorem for Isomap, i.e. a result
which shows that this shortest-path graph metric approximates the manifold geodesic
distance under suitable conditions. Now, in order for Isomap to be truly optimal, it
should be the case that the geodesic distance is itself Euclidean (otherwise, by Theorem 2,
our optimization is hopeless). So this algorithm only makes sense for a Euclidean manifold
that is isometrically embedded, i.e. its geodesic distances are still Euclidean (hence the
name IsoMap). Indeed, we find this justification in the following consistency result, which
demonstrates how fast the graph shortest path metric converges to the true manifold
geodesic metric.

Theorem 4 (Isomap, informal, see [Ber+00]). Let M be a compact submanifold of RD

and {xi} be a finite set of data points on M . Let G be a nearest-neighbors graph on {xi}.
Pick any ϵ ∈ (0, 1). If M is geodesically convex and the graph G and the dataset {xi}
satisfy suitable conditions (which get stricter for smaller ϵ), then:

(1− ϵ)dM (x, y) ≤ dG(x, y) ≤ (1 + ϵ)dM (x, y)

Laplacian Eigenmaps (LE) Developed by [BN01], Laplacian Eigenmaps (also called
Diffusion Maps) can be posed as solving the following very simple objective function, where
Wij is some similarity measure perhaps derived from the original interpoint distances, e.g.
the heat kernel Wij = exp(−D2

ij). We impose the condition on the right to avoid a trivial
embedding (e.g. placing all x on the same point, so the interpoint distances are all zero).

min
x1,...,xn

∑
i,j

Wij∥xi − xj∥2 XXT = I
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The key mathematical insight for the algorithm lies in the following fundamental fact about
the graph Laplacian, which is a sort of second-order differential operator on a graph.

Lemma 1. Let L = D−W be the graph Laplacian of a symmetric n×n matrix W , where
D is a diagonal matrix such that Dii =

∑
j Wij. Then:

xTLx =
1

2

n∑
i=1

n∑
j=1

Wij(xi − xj)
2

Proof. xTLx = xTDx−xTWx =
∑n

i=1Diix
2
i −

∑
i,j xixjWij =

∑
i,j [Wijx

2
i − 2xixjWij ] =

1
2

∑
i,j Wij(x

2
i + x2j − 2xixj) =

1
2

∑
i,j Wij(xi − xj)

2.

In light of this lemma, the optimization becomes:

min
x1,...,xn

n∑
i=1

xTi Lxi = min
x1,...,xn

tr(XTLX) XTX = I

By Theorem 1, this is an eigenvalue problem. The optimal X is given by a matrix whose
columns are, effectively, the bottom eigenvectors of L. The catch is that the bottom
eigenvector of L, always given by the ones vector, has eigenvalue zero and thus would
break our constraint.

Local Linear Embedding (LLE) A crucial feature of manifolds is the tangent space:
in some sense, the best linear approximation to the manifold at a point. The idea of locally
linear embedding is to learn the manifold via the tangent space. This is accomplished in
a two-step process: (1) to learn the local linear structure of the high-dimensional points
X and then impose that the low-dimensional points Y respect that local structure (2).
Given X ∈ RD×n and a neighborhood size k, we have:

(1) W ∗ = argmin
W∈Rn×n

n∑
i=1

∥∥∥xi − ∑
j∈N(i)

Wijxj

∥∥∥2 ∑
i

Wij = 1 and j ̸∈ N(i) =⇒ Wij = 0

(2) Y ∗ =argmin
Y ∈Rd×n

n∑
i=1

∥∥∥yi − ∑
j∈N(i)

W ∗
ijyj

∥∥∥2 Y Y T = Id

The first problem can be rewritten more suggestively using the following notation: let
Ni be the D × k neighbor matrix, Wi be the corresponding k × 1 weight vector for the
neighbors of xi, and let e be the k × 1 ones vector.

(1) W ∗
i = argmin

Wi

W T
i (Xie

T −Ni)
T (Xie

T −Ni)Wi eTWi = 1

This can be solved using Lagrange multipliers (i.e. adding in the constraint with a variable
λ, differentiating with respect to Wi, setting to zero). The result is:

W ∗
i = (λ/2)

[
(Xie

T −Ni)
T (Xie

T −Ni)
]−1

e
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Method Kernel Note

PCA XTX XTX = covariance matrix
Classical MDS −1

2HDEuclideanH
Isomap −1

2HDgeodesicH Dgeodesic = shortest path distance.
LLE λmaxI − (I −W ∗)(I −W ∗)T W ∗

i = (Xie
T −Ni)

T (Xie
T −Ni)

LE λmaxI − L L = graph Laplacian of X

Table 2.1: Canonical manifold learning techniques and their corresponding kernels, when
viewed as special cases of kernel PCA. Note that in LLE and LE, we exclude the top
eigenvectors because they output trivial solutions.

where λ is chosen such that
∑

j W
∗
ij = 1 for all i.

The second problem, meanwhile, reduces as follows (where we reinterpret W ∗ as lying
in Rn×n, with neighbors matching appropriately):

(2) Y ∗ = argmin
Y

tr
(
Y (In −W ∗)(In −W ∗)TY T

)
Y TY = I

The solution (in terms of the components of the Y vectors) is given by the bottom d
eigenvectors of (I −W ∗)(I −W ∗)T .

Reduction to Kernel PCA Each of the aforementioned manifold learning algorithms
reduce to an eigenvalue problem which looks similar to PCA. Indeed, we can make this
connection precise: the manifold learning algorithms are precisely PCA with a kernel that
looks to preserve local geometry.

The general form of kernel PCA is as follows: given some kernel K ∈ Rn×n capturing
some notion of dot products for the original data, i.e. Ki,j = K(xi, xj), solve:

argmin
Y ∈Rd×n

∥K − Y TY ∥

The generalization of each technique as kernel PCA is summarized in Table 2.1. In the
spirit of unsupervised learning, it is natural to ask: how might we optimize our choice of
kernel? It turns out there is a nice way to approach this using semidefinite programming.
The idea of [WS06] is to learn a kernel which spreads out the data as much as possible,
while preserving local distances. This is captured by maximizing the trace:

K∗ = argmax
K≽0

tr(K) Nij(Kii +Kjj − 2Kij − ∥xi − xj∥2) = 0
∑
i,j

Kij = 0

where Nij = 1 if (i, j) are considered neighbors in X, and zero otherwise. Note that the∑
i,j Kij = 0 condition is there to ensure that K represents a proper covariance matrix,

i.e. K = Y TY and E(Y ) = 0. This method is known as maximum variance unfolding
(MVU) or semidefinite embedding.
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2.3 Basics of Manifolds

One can formulate manifold learning methods without too much mathematical grounding
as to what a manifold actually is. However, in order to prove consistency results about
these methods, it becomes crucial to work on a more refined level of abstraction. We
review some of the basic ideas and definitions below .

A topological space is, roughly speaking, a set with some notion of “closeness.” One
can endow a topological space with additional structure, such as a metric, norm, or inner
product. Euclidean space is a particularly well-endowed topological space (a Hilbert space,
in fact). A manifold is a topological space is locally similar to Euclidean spac.

Definition 2 (topological space). A topological space is a pair (X, τ) with X an arbitrary
set and τ ⊂ P(X) a collection of (“open”) subsets of X such that (1) ϕ ∈ τ , (2) τ is
closed under arbitrary unions, and (3) τ is closed under finite intersections.

Two notions of well-behavedness for a topological space are:

• Hausdorff, meaning for all u ̸= v there exist open neighborhoods U of u and V of v
that are disjoint. (Importantly, this guarantees the uniqueness of limits).

• Second countable, meaning there exists a countable set of open sets U ⊂ τ such that
any open set can be expressed as a union of elements from U .

It is easy and instructive to verify that Euclidean space satisfies both of these conditions;
the discrete topology (τ = P(X)) is Hausdorff but not second countable; and the indiscrete
topology (τ = {ϕ,X}) is trivially second countable but not Hausdorff. In light of these
examples, observe how the second countable condition ensures that there aren’t too many
open sets, while the Hausdorff condition ensures there aren’t too few.

Definition 3 (topological manifold). A manifold M of dimension n is a Hausdorff,
second-countable topological space such that for all p ∈ M , there exists (U, ϕ) where U
is an open neighborhood containing p and ϕ : U → ϕ(U) ⊂ Rn is a homeomorphism (i.e.
bijective with continuous inverse). We call (U, ϕ) a coordinate chart.

In order to have a more expansive theory of calculus on manifolds, we would like to
impose some differentiability conditions on the coordinate charts.

Definition 4 (smooth manifold). A smooth or C∞ manifold is a manifold with a smooth
atlas, i.e. a collection of charts {Uα, ϕα} such that:

• The coordinate neighborhoods cover the manifold: M =
⋃

α Uα.

• The coordinate charts are smoothly compatible, meaning: for (U, ϕ) and (V, ψ), the
following two “transition maps” are smooth (as functions Rn → Rn):

ψ ◦ ϕ−1 : ψ(U ∩ V ) → ϕ(U ∩ V ) ϕ ◦ ψ−1 : ϕ(U ∩ V ) → ψ(U ∩ V )

Definition 5 (smooth map). Let M and N be m and n-dimensional manifolds, respec-
tively. A map f : M → N is smooth if, for all p ∈ M , there exists charts (U, ϕ) about p
and (V, ψ) about f(p) ∈ N such that ϕ−1 ◦ F ◦ ψ : Rm 7→ Rn is a smooth map.
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The graph of a function, say the curve {(x, ex)}x∈R in R2, is a canonical example of
a submanifold. There are various notions of submanifold, but two will be particularly
important for us:

• An immersed submanifold of M is the image of an immersion map f : N → M ,
i.e. if the pushforward f∗,x : TxN → TxM is injective for all x.

• An embedded or regular submanifold), is an immersed submanifold for which
the inclusion map is a topological embedding. That is, the submanifold topology on
S is the same as the subspace topology.

The tangent space is a vector space, associated to every point of a manifold, which
effectively encodes the local linear structure of a manifold. Here is one way of defining the
tangent space, explained in [Tu11].

Definition 6 (tangent space). Let the C∞
p (M) denote the set of smooth germs at p,

i.e. smooth functions M → R modulo ∼ where f ∼ g if f, g agree on a neighborhood of
p. The tangent space of M at p, denoted TpM , is the set of point-derivations at p, i.e.
linear maps D : C∞

p (M) → R satisfying the so-called Leibniz rule:

D(fg) = (Df)g(p) + f(p)Dg

This perspective of tangent spaces acting on germs of real-valued functions on manifold
will be crucial in our next step: using the tangent space to conceptualize a first notion of
differentiation on manifolds.

Definition 7 (differential). Let f : M → N be a smooth map between manifolds. Then
the differential or pushfoward f∗ : TpM → TpN is defined as follows: for Xp ∈ TpM
and g ∈ C∞

f(p)(N), we have: (
f∗(Xp)

)
(g) =

(
Xp

)
(g ◦ f)

where g ◦ f belongs to C∞
p (M).

Definition 8 (tangent bundle, informal). A smooth manifold M ’s tangent bundle is the
set TM = {(x, y) : x ∈M,y ∈ TpM} equipped with a natural topology and smooth structure
(see [Tu11], page 131) that makes it a smooth manifold itself. If M is of dimension n,
TM is of dimension 2n.

Though it may seem unnatural or contrived at first glance, the tangent bundle provides
us an excellent notation for thinking about certain geometric objects. Two examples:

• Given a smooth map between smooth manifolds f : M → N , the derivative map is
most compactly written as a map between tangent bundles:

Df : TM → TN Df(p,Xp) = (f(p), f∗,p(Xp))

• A smooth vector field onM (a.k.a. smooth section of TM) is a smooth map between
manifolds X :M → TM where X(p) = (p,Xp).
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A geodesic is a shortest path along a manifold. In order for a geodesic metric to be
well-defined, it turns out to be crucial to have a local sense of angle. The mathematical
manifestation of this is a smoothly varying inner product over on the tangent spaces of a
manifold, formally known as a Riemannian metric.

Definition 9 (Riemannian metric). g is a Riemannian metric on a smooth manifold M
if for each p ∈M there exists gp : TpM × TpM → R such that:

• gp is an inner product on TpM (positive definite, symmetric, and bilinear).

• g is smoothly varying, i.e. p → gp(Xp, Yp) is a smooth function for every smooth
vector field X,Y ∈ X (M).

Proposition 1 ([Lee12], Prop. 13.3). Every C∞ manifold admits a Riemannian metric.

With this additional structure on the tangent space, we are able to reason about paths
and curvature on a manifold.

Definition 10 (geodesic). Given a Riemannian manifold (M, g), the geodesic distance
between p, q ∈M is as follows:

dM (p, q) = inf
γ∈Paths(p,q)

Length(γ)

where Length(γ) =
∫ 1
0 gγ(t)(γ

′(t), γ′(t))dt, and

Paths(p, q) = {γ : [0, 1] → M such that γ(0) = p, γ(1) = q, γ piecewise smooth curve in M}

If there exists γ∗ ∈ Paths(p, q) such that dM (p, q) = Length(γ∗), we call γ∗ a geodesic
path between p and q.

This upgrades the manifold as a whole into a metric space (note that the Riemannian
metric only turns the tangent space into an inner product space).

2.3.1 Notions of Regularity

Working with general manifolds can be extremely difficult. In particular, they can have
high curvature, nearly self-intersecting themselves. This can really mess with intrin-
sic dimension estimators, and make them severely overestimate the dimension of high-
dimensional data. In this section, we describe some common notions of regularity used in
the manifold learning literature.

Definition 11 (reach and injectivity radius). Let M be a compact submanifold of RD.
Define the medial axis to be the set of points with at least two projections onto M , i.e.

Med(M) = {x ∈ RD : ∃p ̸= q ∈ S such that d(x, p) = d(x, q) = d(x, S)}

The reach of M is the largest real number τ such that all points within a distance τ of M
have a unique projection onto M . The simplest way to say it is that it is the Euclidean
distance between the manifold and its medial axis, i.e.

τ(M) = dEuclidean(M,Med(M))
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The injectivity radius ofM is defined similarly, but with the manifold’s intrinsic geodesic
distance metric: namely, it is the largest r such that for all p ∈ M , if dM (p, q) < r, then
the geodesic path from p to q is unique.

ι(M) = sup{r ∈ R : ∀p ∈M,dM (p, q) < r =⇒ ∃!γ∗ dM (p, q) = Length(γ∗)}

The existence of certain geodesic paths makes for an interesting and rather important
technical property of manifolds known as geodesic completeness.

Fact 1. For (M, g) a Riemannian manifold, and any p ∈M and Xp ∈ TpM , there exists
a unique curve γ = γp,Xp : S →M for S ⊂ R such that:

γ(0) = p γ′(0) = Xp

It is natural for us then to define the following set:

E = {(p,Xp) : γ
p,Xp’s domain can be extended to all of R}

Definition 12 (geodesic completeness). A Riemannian manifold is geodesically complete
if E = TM , i.e. the unique curve passing through each point can be extended indefinitely.

Oftentimes we care about a manifold having bounded volume, with respect to its
intrinsic volume measure. Indeed, this volume measure is crucial to the development
of probability theory on the manifold. This requires an understanding of integration of
Riemannian manifolds. We discuss briefly the concept of a volume form, which we define
briefly below:

Definition 13. If (M, g) is a Riemannian manifold, then an n-form ω is called a volume
form of m if it is canonically defined, i.e. ω = θ1 ∧ ...∧ θn is independent of the choice of
a positively oriented orthonormal frame. Then the volume of the manifold M is given
by vol(M) =

∫
M ω.

2.4 Big Results in Manifold Learning

Now that we have a richer sense of some of the mathematical tools at play in the study
of manifolds, we are in a better position to formulate and discuss the major algorithmic
results and goals of manifold learning. We focus on two results: one, an algorithmic
realization of the Nash embedding theorem, and the other, an algorithm for testing whether
data actually satisfies the manifold hypothesis.

2.4.1 Euclidean Embedding Algorithm

Though we often imagine manifolds as floating in an ambient Euclidean space, this need
not be the case. A priori, they are topological spaces that are only locally Euclidean.
Nonetheless, there are structure-preserving maps (i.e. smooth embeddings) one can con-
struct to place a manifold in Euclidean space. We make this defintion precise below, before
stating the two main theorems to this effect.

Definition 14. A smooth map f : N →M is an embedding if
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• (1) it is a one-to-one immersion, and

• (2) the image f(N) with the subspace topology is homeomorphic to N under f .

Definition 15. A smooth map between Riemannian manifolds F : (M, g) → (N, g′) is
called metric-preserving if for all p ∈ N and u, v ∈ TpN , ⟨u, v⟩p = ⟨F∗u, F∗v⟩F (p). An
isometry is a metric-preserving diffeomorphism (i.e. F is smooth and so is F−1).

There are two famous theorems ensuring that we can always find embeddings or iso-
metric embeddings into Euclidean space given enough structure on our manifold.

Theorem 5 (Whitney Embedding Theorem). Any smooth real m-dimensional manifold
can be smoothly embedded in R2m.

Theorem 6 (Nash Embedding Theorem). A compact m-dimensional Riemannian mani-
fold (M, g) can be isometrically C1 embedded in Euclidean space of dimension 2n+ 1 and
C∞ embedded in dimension O(n2).

These theorems are in some sense the models for all manifold learning algorithms.
However, most of the aforementioned methods do not have such guarantees. One approach
to achieving reasonable guarantees has been to emulate some of the proof techniques
involved in the theorems.

Theorem 7 (Approximate Nash Embedding Algorithm, informal, see [Ver12]). Given a
sufficiently tight finite sample X from a CM -regular n-manifold of global reach τ embedded
in RD, one can compute efficiently a map A : RD 7→ Rd such that:

• A is a (1± ϵ)-isometric embedding of M into Rd.

• d = Ω(n log(CM/τ)) (assuming d ≤ D).

In particular, X must be a α-bounded (ρ, d) cover (see original paper, Definition 3).

2.4.2 Testing the Manifold Hypothesis

How can we tell, a priori, that the manifold hypothesis is true? [NM10] treat this as a
real hypothesis-testing problem, and formulate as follows.

Let G(d, V, τ) be the family of d-dimensional C2-submanifolds in the unit ball of RD

with volume ≤ V and reach ≥ τ . Given i.i.d. samples from P, the estimator determines
with probability ≥ 1−δ, under the promise that one of the following must be true, whether:

• There exists M ∈ G(d,CV, τ/C) such that L(M,P) ≤ Cϵ.

• There exists no M ∈ G(d, V/C,Cτ) such that L(M,P) ≤ ϵ/C.

where C is a universal constant, and our measure of fitting the manifold is:

L(M,P) =

∫
d(x,M)2dP(x)

In the run of the algorithm, this loss measure is approximated by the empirical loss,
Lemp(M) = 1

s

∑s
i=1 d(xi,M)2, which for enough samples is close enough (by standard

empirical process methods).
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The key insight of the method used here––which will not find a full treatment in
this thesis––is translating the optimization of L(M,P) over a family of manifolds to an
optimization over sections of a disc bundle. The benefit of the latter space is that it is
parameterized and can be approached via a convex program. We give a brief background
on the algorithm.

Definition 16. Given x1, ..., xn sampled from P, we say M ∈ G(d, V, τ) is an ϵ-optimal
interpolant if for some constant C (depending only on dimension),

Lemp(M) ≤ ϵ+ inf
M′∈G(d,V/C,Cτ)

Lemp(M′)

Definition 17. For D an open set of RD and M an embedded submanifold of D of
dimension d, let π : D 7→ M be a Ck map such that for all z ∈ M, π(z) = z and π−1(z)
is isometric to a Euclidean disc of dimension n − d. We call π a disc bundle. We
call s : M 7→ D a section of D if for all z ∈ M, s(z) ∈ π−1(z) and for some τ̂ , V̂ ,
s(M) ∈ G(d, τ̂ , V̂ ).

With this, we can specify the algorithm.

• Construct a set of disc bundles Dnorm
over manifolds in G(d,CV, τ/C) rich enough

that every ϵ-interpolant is a section of some member of Dnorm
.

• Given Dnorm ∈ Dnorm
, use convex optimization to find a minimal ϵ̂ such that Dnorm

has a section which is a ϵ̂-optimal interpolant.

This is a achieved by finding good local sections of Dnorm and then patching these
up using a partition of unity supported on the base manifold of Dnorm.
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Chapter 3

Algorithms

Most of the aforementioned manifold learning methods require, as a hyperparameter, the
dimension of the output embedding. Without an accurate guess of the true manifold
dimension of the data, most algorithmic guarantees are moot. This is one key motivation
for intrinsic dimensionality estimation. Other motivations are complexity-oriented: the
runtime of many important machine learning algorithms (e.g. density estimation, kd-trees,
nearest-neighbor search) have exponential dependence on the intrinsic dimension of data.
It is useful to know these finite-sample convergence rates ahead of time.

The most common strategy for manifold intrinsic dimension estimation is as follows:
analyze some local statistic that scales with dimension, and then use the observed scaling
behavior to reverse-engineer a guess for the intrinsic dimension. In this function we discuss
three local statistics that can be leveraged to construct estimators.

• Local covariance structure, i.e. PCA in a neighborhood [DF08; Lit+09].

• Number of nearest neighbors within a given radius r [LB04; FSA07].

• Covering number, i.e. number of boxes or balls of size r needed to cover the
manifold [Kég02].

We also discuss two notable global methods, i.e. estimators which observe the scaling
behavior of statistics relating to the entire dataset.

• Minimal subgraphs, e.g. length of the traveling salesman path [KRW16] or mini-
mum spanning tree [CH06] on the interpoint distance graph.

• Convergence rate of empirical measure to the true measure, e.g. under the
Wasserstein metric [Blo+22]. They analyze the scaling of this metric with respect
to the size of the sample.

Another flavor of global methods involved running dimension reduction algorithms like
multidimensional scaling and compare the errors of the output. Naturally, the observed
error should decrease as the dimension increases, but the idea here would be that the
true dimension is at the ”elbow” of this curve, where the marginal benefits of using more
dimensions for the output embedding start to decay significantly. Choosing this cut-off
is somewhat subjective, though; not to mention the fact that some of these manifold
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optimization procedures, among them Kamada-Kawai MDS, are NP-hard to optimize in
the first place.

3.1 Dimension Estimation: Linear Case

Probabilistic PCA In order to appreciate the manifold intrinsic dimension estimation
problem, it is essential that we have a good grasp on the case where the manifold of
interest has no curvature. In other words, we would like to estimate the dimension of a
linear subspace, based on finite samples. The solution, as we will see, depends crucially
on the PCA method, discussed at length in the previous section.

As per [TB99], PCA is known to arise from maximum likelihood estimation on the
following generative model:

y =Wx+ µ+ ϵ ∈ RD ϵ ∼ N (0, σ2ID) x ∼ N (0, Id) (3.1)

with µ ∈ RD and W ∈ RD×d defining the underlying subspace, and d ≪ D presumably.
We assume isotropic noise. Note that in the noiseless regime, the problem is trivial:

Remark 1. If σ2 = 0, then the following algorithm computes the dimension of the mani-
fold with exactly n = d+ 1 samples (almost surely):

Algorithm 1 Linear ID Estimation: Noiseless Case

Require: Samples {y1, ..., yn} ⊂ Rd, i.i.d. according to (3.1).
for t ∈ [n] do

If {y1, ..., yt} are linearly dependent, terminate and output t− 1.
end for

For σ2 > 0, we can develop a simple maximum likelihood estimator. Due to the
additivity of Gaussian distributions, it is easy to analyze y conditioned on the value x.

y | x ∼ N (Wx+ µ, σ2ID)

If you marginalize, i.e. p(y) =
∫
x p(y|x)p(x)dx, then indeed y is still a multivariate normal.

If C = WW T + σ2ID, then y ∼ N (µ,C). We set up maximum-likelihood estimate in the
standard manner.

dMLE = argmin
d′∈[D]

min
W,µ

P
(
y1, ..., yn

∣∣∣ W,µ)
We may take the logarithm and simplify the density of the multivariate Gaussian to obtain:

argmin
d′∈[D]

min
W,µ

−N
2

(
d′ ln(2π) + ln(detC) + tr

(
C−1 · 1

N

N∑
i=1

(yi − µ)(yi − µ)T
))

It is shown in [TB99] that, for fixed dimension (i.e. the interior minimization) this
objective recovers the usual PCA method. If we know the noise ahead of time, we can use
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this information to filter out the signal principal components from the ones that arise by
noise, and thereby detect the true dimension of the data. The algorithm is as follows:

Algorithm 2 Linear ID Estimation: Noisy Case

Require: Samples {y1, ..., yn} ⊂ RD, i.i.d. according to (3.1).
Require: Cutoff parameter η.

Compute sample covariance matrix C = 1
N

∑n
i=1(yi − µ)(yi − µ)T .

Return d̂ as the number of eigenvalues of C of size ≥ η.

In order for this algorithm to work, we need to make sure the signal is strong enough
that it does not get drowned out by the noise. This is captured in the condition we set in
the following theorem.

Theorem 8. Let λmin(WW T ) > σ2 + 2ϵ for some ϵ > 0. Then with cutoff parameter

η = σ2 + ϵ and sample size n ≥ O(D log(1/δ)2

ϵ2
), Algorithm 2 outputs a correct estimate of

the dimension with probability ≥ 1− δ.

In order to prove this, we invoke the following theorem regarding the convergence of
the empirical covariance matrix to its true value.

Theorem 9 (see [Ver10], Corollary 5.50). Let Xi denote independent samples from a sub-
gaussian distribution in RD with covariance matrix Σ, and let ϵ ∈ (0, 1), t ≥ 1. Then with
probability ≥ 1− 2 exp(−t2D),

n ≥ C(t/ϵ)2D =⇒ ∥Σn − Σ∥ ≤ ϵ

where Σn = 1
n

∑n
i=1Xi⊗Xi, the sample covariance matrix, and ∥ · ∥ is the operator norm.

Proof of Theorem 8. Let t ≥
√

log(1/2δ)/D. Then with probability 1 − δ, for n ≥
O(D log(1/δ)2

ϵ2
), we have∥Σn−Σ∥ ≤ ϵ and indeed, by basic properties of the operator norm,

every eigenvalue of Σn is within ϵ of its corresponding eigenvalue in Σ. In this event, out
cutoff will indeed only select for the non-noisy eigenvalues and hence output the correct
intrinsic dimension.

Of course, the difficulty in practice is getting the right cutoff between signal and
noise. There are various heuristics one might use to do this: for instance, plotting the
reconstruction error of the various principal components and seeing where the marginal
benefits of including more principal components seems to start diminishing (some call this
the elbow method).

Open Problem 2. Establish matching upper and lower bounds on ID estimation in the
linear case. Furthermore, develop an algorithm which can adaptively learn the noise from
the signal, given the promise that there is a separation.

3.2 Topological Notions of Dimension

In this section we describe a number of classical, asymptotic notions of dimension, which
describe topological spaces more generally than manifolds. Since manifolds are in many
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regards some of the most well-behaved topological spaces, these notions of dimension
almost always coincide with the notion of manifold dimension. While they are often not
efficiently computable, they will help us develop intuition about how to learn manifold
dimension. We begin with the notion of covering numbers and Minkowksi dimension.

Definition 18. Let X be a topological space with a measure µ on it. For S ⊂ X, let the
covering number Nϵ(S) be the infimum of the number of balls of radius ϵ needed to cover
S;. Similarly, let the box-covering number Bϵ(S) denote the infimum of the number of
boxes of side-length ϵ needed to cover S.

The Minkowski dimension (a.k.a. capacity dimension) of a set S is given by:

dM (S) = lim sup
ϵ→0

logNϵ(S)

log(1/ϵ)

The box-counting dimension of a set S is similar:

dB(S) = lim sup
ϵ→0

logϵ Bϵ(S)

log(1/ϵ)

The Minkowski and box-counting dimensions gauge dimension as a sort of scaling
process: as ϵ decreases, the ϵ-covering numbers increase exponentially in d. This idea of
exponential scaling in d is used everywhere in intrinsic dimension estimation.

We get a slightly different perspective through the Hausdorff dimension. While is may
seem contrived at first glance, there is a simple intuition behind it all: namely, that an
overestimate of the dimension of a set will result in us assigning zero measure to that set
(e.g. a square has positive measure in R2 but zero measure in R3).

Definition 19. The Hausdorff dimension of a set S ⊂ X is given by:

dH(S) = inf{d : µ
(d)
H (S) = 0}

where µ
(d)
H is the d-Hausdorff measure:

µ
(d)
H = lim

ϵ→0
inf

{ ∞∑
k=1

rdk : S ⊂
∞⋃
k=1

B(xk, rk), rk ≤ ϵ ∀k
}

A more intuitive but much less robust related notion of dimension is the local Hausdorff
dimension, which depends on the choice of a measure.

Definition 20 (see [CS16]). Let µ be a probability distribution on S ⊂ X. If the following
limit exists, it is the pointwise or local Hausdorff dimension.

dlH = lim sup
ϵ→0

logµ(B(x, ϵ))

ln(ϵ)

Definition 21 (Assouad 1983). The doubling dimension of a set S ⊂ RD is:

dA(S) = inf{d : ∀B(x, r) ⊂ RD, Nr/2(B(x, r) ∩ S) ≤ 2d}
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Definition 22. Let (X, d) be a metric space. A set V ⊂ X is r-separated if d(x, y) ≥ r
for all distinct x, y ∈ V . The r-packing number Mϵ(S) of a set S ⊂ X is the maximum
cardinality of an ϵ-separated subset of S.

Fact 2 (see [Kég02]). A basic inequality between packing and covering numbers holds:

Nϵ(S) ≤Mϵ(S) ≤ Nϵ/2(S)

This implies that the Minkowski dimension can be rewritten in terms of packing numbers:

dM (S) = lim sup
ϵ→0

log(Mϵ(S))

log(1/ϵ)

3.3 Local Methods

3.3.1 Estimating Packing Numbers

The idea of [Kég02] is to use packing numbers to estimate Minkowski dimension and
thereby manifold dimension. The natural definition––approximating the limit that is as
follows:

Definition 23. The (r1, r2)-scale-dependent capacity dimension (where r2 > r1) of
a finite set S = {x1, ..., xn} is defined as follows:

d̂ = − logMr2(S)− logMr1(S)

log r2 − log r1

The next question would be: how do we calculate packing numbers of finite sets? The
following result would seem to suggest that this is a hopeless endeavor.

Claim 1. Computing Mϵ(S) for S = {x1, ..., xn} ⊂ Rd is NP-hard.

Proof. There is a simple reduction from maximum independent set, an NP-complete prob-
lem: take the graph of where the vertices are the points in S and the vertices have edges
only if the correspond points are a distance r away. Then the size of the maximum inde-
pendent set in this graph corresponds to the max subset of points that are all a distance
ϵ from each other.

To make matters worse, maximum independent set is NP-hard to approximate within
a factor of n1−ϵ for all ϵ > 0 [Kég02]. However, there still is hope for approximation: on
weighted disk graphs (i.e. the kind of graph that comes up for estimating packing numbers
in two dimensions) there are poly-time approximation schemes. This PTAS extends to
higher dimensions, at the expense of an exponential dependence on the dimension [EJS05].

To avoid this exponential dependence, [Kég02] implements a greedy algorithm which
appears to work well in practice but lacks proven guarantees.

With the estimate for Mϵ(S) at different scales, one can compute the scale-dependent
capacity dimension and average. A more robust handling, in fact, would be to plot the
logarithms of the capacity dimension against the radius and use the slope of the least-
squares regressor.
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Algorithm 3 Kegl’s algorithm to estimate Mϵ(S)

Samples S = (y1, ..., yn) ⊂ Rd. Set of centers C = ϕ.
Let C = C ∪ {i ∈ [n] : ∃c ∈ C s.t. ∥yi − c∥ ≤ ϵ}.
while C ̸= S do

Randomly permute S.
Iterate through S \ C, add up to |C| points to C.

end while

3.3.2 Correlation Dimension

The idea of [GP83]’s method is to use a dimension estimator more directly adapted to
the setting of estimating manifold dimension given a stream of finite samples. Note the
similarity to the local Hausdorff dimension, except instead of looking pointwise we consider
all pairwise distances.

Definition 24 (Correlation Dimenson). Let {yi}i∈N be a sequence of elements sampled
i.i.d. from some metric space (X, d). The correlation integral is:

C(ϵ) = lim
l→∞

1(
l
2

) l∑
i=1

l∑
j=i

1[d(yi, yj) ≤ ϵ]

The correlation dimension of X is given by:

dCorr = lim
ϵ→0

ln(C(ϵ))

ln(ϵ)

Unlike the packing number, the correlation integral is easy to compute: one only needs
to iterate over every pairwise distance and check if it small enough. A natural problem
with this kind of approach is: what is the appropriate scale to look at? [HA05] address
this issue using a fact about U-statistics (aside: a U-statistic is a class of statistics defined
as the average over the application of a given function applied to all tuples of a fixed size).

Definition 25. Let {yi}ni=1 be sampled from a d-dimesional submanifold of RD. The
empirical Hein-Audibert correlation dimension is given by:

Ul,d(ϵ) =
1(
l
2

) l∑
i=1

l∑
j=i

ϵ−dK(∥yi − yj∥2/ϵ2)

where K is a generic non-negative function.

The main insight of [HA05] is that there is a “correct” bandwidth ϵ to look at, in the
sense that Ul only converges if lϵd → ∞. The algorithm involves looking at different values
of l (up to the size of the dataset, of course). Here is an overview:

• Fix a scaling of ϵ = ϵd(l) as a function of l and d.

• Break data into subsamples of varying sizes N1, ..., Nk = [n].
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Compute for each d′ ∈ [D]

Sd′ = {(log ϵd′(Ni), logUNi,d′(ϵd′(Ni)))}i∈[k]

• Choose d∗ minimizing the least-squares estimated slope through {U}

3.3.3 Local Covariance Structure

The most naive approach to manifold intrinsic dimension estimation is to attempt a sort
of local PCA. This comes from the mathematical understanding that the dimension of the
tangent space at a point in a manifold is equal to the dimension of the manifold itself.
Here is one formalization of such a concept.

Definition 26 (see [DF08], Definition 2). Set S ⊂ RD has local covariance dimension
(d, ϵ, r) if its restriction to any ball of radius r has covariance matrix whose largest d
eigenvalues satisfy

∑
i∈[d] σ

2
i ≥ (1− ϵ)

∑
i∈[D] σ

2
i .

Note that this definition applies to arbitrary subsets of Euclidean space, not necessarily
manifolds. It was shown in [DF08] that random projection trees (a variant of kd-trees) is
able to adapt to this notion of intrinsic dimension of data.

Ultimately, like other ID estimation techniques, local PCA of the nature suggested in
this definition suffers from the multi-scale problem: what is an appropriate neighborhood
size to consider the data to be approximately linear? This motivates the multi-scale

approach by [Lit+09]. Let σ
(r)
i (z) denotes the ith singular value (i ∈ [D]) of the covariance

matrix of the points S ∩ Br(z). The idea is to compute σ
(r)
i (z) for some representative

points z ∈ M and a range of radii r > 0. The singular values corresponding to noise
are the ones which do not scale with r. There is also a key difference between singular
values corresponding to tangent directions or curvatures, depending on whether they scale
linearly or quadratically with r. This analysis of the local behavior helps determine an
appropriate neighborhood size for looking at singular values (i.e. principal components).

3.3.4 Nearest Neighbors

If points are evenly sampled on a D-dimensional manifold, then it indeed the case that a
radius r ball should expect to contain O(rD) points. For finite data, we understand this
as the rate at which nearest neighbors appear in a growing ball. This is the derivation
behind, for instance, the popular MLE estimator of [LB04]. The estimator, for a fixed
data point y, is given by:

d̂k(y) =
[ 1

k − 2

k−1∑
j=1

log
Tk(y)

Tj(y)

]−1

where Tk(y) is the Euclidean distance from a data point y to its kth nearest neighbor.
The derivation of this estimator is largely heuristic and involves modeling the sam-

pling from the manifold in a small enough neighborhood as a homogenous Poisson pro-
cess. While asymptotically consistent, it is relatively difficult to establish finite-sample
guarantees. Instead, we present a very similar estimator by [FSA07].
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The analysis proceeds as follows: define

η(µ, r) = r−d · P(yi ∈ B(µ, r))

It turns out, if we sample points uniformly on a manifold with standard regularity as-
sumptions, then η(x, ·) is slowly varying for small enough r. This gives rise the following
(approximate) relationship between the rank of a nearest neighbor and its distance.

k/n = η0 · [Tk(x)]d

The trick is to take the logarithm of the above and see it as a function that is linear in d.
We can calculate the slope of this function given two points.

ln(k/n) = ln(η0) + d ln(Tk(x))

Noticing the linear relationship, we can relatively easily solve for d and use this as the
basis of our estimator.

d̂(x) =
ln(2)

ln(Tk(x))− ln(T⌈k/2⌉(x))

There are two straightforward ways in which we can combine the estimator at different
points in order to give a holistic estimate of intrinsic dimension: the authors call this
“averaging” versus “voting.”

d̂avg =
1

n

n∑
i=1

d̂(xi) ∧D

d̂vote = argmax
d′∈N+

n∑
i=1

1[d̂(xi) = d′]

Starting with a guarantee on the individual point-estimates of intrinsic dimension, and
combining these using McDiarmid’s inequality and a counting argument relying on the
covering of a manifold by cones, the authors arrive at the following exponential rates of
convergence of the estimators.

Theorem 10. For constants c1, c2, c > 0 we have:

P(d̂vote ̸= d) ≤ exp
( −c1n
(cdk)2

)
P(d̂avg ̸= d) ≤ exp

( −c2n
(Dcdk)2

)
In particular, for n ≥ O(k2c2d log(1/δ)/c1), we have that d̂vote is a correct estimate of the
dimension with probability ≥ 1− δ.

3.4 Global Methods

Local methods generally focus on estimating the dimension of the tangent space. They
suffer from a certain adaptivity problem: one must deduce the right neighborhood size for
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which the manifold has this approximate linearity. Global methods, on the other hand,
look at statistics that somehow depend on the entire dataset. We point out two

3.4.1 Minimal Subgraphs

Traveling Salesman Path Given an undirected complete weighted graph, the traveling
salesman path is a tour through the graph (i.e. a cycle going through all vertices of the
graph) of minimum weight. The idea of [KRW16] was to use a traveling salesman path,
weighted by interpoint distance, to estimate intrinsic dimension.

TSP(X1:n; d1) = min
σ∈Sn

{ n∑
i=1

∥Xσ(i+1) −Xσ(i)∥d1RD

}
They formulate the ID estimation problem as a binary decision problem. Note that τg is
the global reach of the manifold.

• If TSP(X1:n; d1) ≤ O(max{1, τd1−D
g }), return d̂ = d1. Otherwise, return d̂ = d2.

With some heroic effort, this makes way for a minimax upper bound, described further
in a later section of this thesis.

Minimum Spanning Tree Following [CH03], we consider the use of the minimum
spanning tree of an undirected weighted graph as a proxy for intrinsic dimension. In this
case they use the scaling of the weight of the MST with respect to the size of a sample of
the data: larger samples should yield weight that grows exponentially with the dimension
of the dataset.

Open Problem 3. Develop guarantees for minimum spanning tree based estimators of
the intrinsic dimension, in a similar spirit to the minimax upper bound given by [KRW16]
using TSP. If ST is the set of spanning trees of a graph consisting of points X1:n in
Euclidean space then the following quantity might be of interest:

MST(X1:n; d1) = min
T∈ST

{ ∑
(i,j)∈T

∥Xi −Xj∥d1Rd

}
The benefit, of course, is that MST is poly-time computable (via Prim’s or Kruskal’s

algorithm) while TSP is NP-hard.

3.4.2 Convergence of Empirical Measure

Let P be a probability measure on a manifold M . With n independent samples supported
on P, one can construct an empirical distribution with a sum of Dirac delta functions:

Pn =
1

n

n∑
i=1

δxi

A natural theoretical question is: in what sense does Pn converge to P, and how fast? A
priori, this may seem like a question that is completely unrelated to intrinsic dimension es-
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timation. But, as pointed out by [Blo+22], the convergence rates depend on the dimension
of the support and hence can be used to reverse-engineer the intrinsic dimension.

First of all, the most natural notion of convergence between distributions is known as
weak convergence, i.e. convergence in distribution. It is well-known that the empirical
measure converges to the true measure weakly.

Theorem 11 (Glivenko-Cantelli). Pn → P in distribution (a.k.a. weakly), i.e. for all
bounded continuous functions f : supp(P) → R we have:∫

S
f(x) dPn(x) →

∫
S
f(x) dP(x)

Note that we can metrize weak convergence through the Wasserstein-p distance. This
will be crucial to allow us to calculate convergence rates.

Definition 27. Let µ, ν be two measures on a metric space (M,d). Let Γ(µ, ν) be the set
of couplings of the two measures (i.e. measures on the product space where µ, ν are the
marginal distributions). Then the Wasserstein-p distance between µ and ν is given by:

WM
p (µ, ν)p = inf

(X,Y )∼Γ(µ,ν)
E[dG(X,Y )p]

Theorem 12 (see [Vil+09], section 6). For µn distributions on a metric space (X , d) and
p ∈ [1,∞), the following are equivalent:

• µn → µ0 weakly, and
∫
X d(0, x)

pµ(dx) for all i ∈ N0.

• Wp(µn, µ0) → 0 as n→ ∞.

We are interested in the rate of convergence. The first result to this effect was [Dud69],
later sharpened by [MN24] under particular conditions. The main idea is that the rate of
convergence is W1(P, Pn) = Θ(n−1/d), where d is the dimension of the support. The curse
of dimensionality we observe here is actually turned into a blessing by [Blo+22], who use
it to fashion the following estimator.

d̂n =
logα

logWG
1 (Pn, P ′

n)− logWG
1 (Pαn, P ′

αn)

where WG
1 is the graph metric approximation of the Wasserstein-1 distance, and α is a

suitably large natural number.
Note that they use a sort of symmetrization trick here: we do not have access to P to

plug into the Wasserstein metric, but we can take an independent sample and its corre-
sponding empirical measure P ′

n and the convergence rate of W1(Pn, P
′
n) is asymptotically

equivalent to that of W1(Pn,P).
Under suitable assumptions, they derive the following lower-bound:

n ≥ Ω
(
τ−d ∨

(vol(M)

ωd

) d+2
2γ ∨

(
log 1/ρ

)3)
A notable weakness of their approach is its susceptibility to noise. Even the presence

of the smallest full-dimensional noise makes the estimator break down, as we lose the the
convergence rates for the empirical measures.
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Chapter 4

Complexity

We measure the hardness of statistical problems in terms of sample complexity: how
many samples does one need to have any hope of high-accuracy estimation? By designing
a specific estimator, one can provide only an upper bound on this quantity. In this chapter,
we are most interested in lower bounds, which characterize how well any estimator could
do. More specifically, we are interested in bounding the minimax rate Rn: the performance
of the best estimator on its most challenging data distribution. We provide background on
minimax theory before discussing two models in which minimax theory has been applied
in ID estimation. The quick summary is as follows:

• In the noisy model of [Kol00], the minimax rate is exponential, i.e. Rn = Θ(qn) for
some q ∈ (0, 1).

• In the noiseless model of [KRW16], the minimax rate is superexponential, i.e. Ω(n−2n) ≤
Rn ≤ O(n−

n
m−1 )

4.1 On Minimax Theory

Fix a probability space (Ω,F) and a set of probability measures P supported on this
space. Let (Θ, d) be a metric space which we refer to as the parameter space. We call
θ : P → Θ a statistic and the metric d : Θ×Θ → R≥0 the loss function. An estimator
θ̂n : Rn → Θ takes the observations (i.e. X1:n) and outputs a prediction for the statistic.

Definition 28. Let X1:n = (X1, ..., Xn) be an i.i.d. sample from a probability measure
P ∈ P. The minimax risk is defined as follows:

Rn = inf
θ̂n

sup
P∈P

EP
[
d(θ̂n(X1:n), θ(P ))

]
In this section we review the statistical hardness of manifold dimension estimation,

following [KRW16]. The notion of hardness we consider is a worst-case metric known as
minimax rate. We define this below and then explore how upper and lower bounds to
this metric work. But first, some preliminaries:

To upper bound the minimax risk, it suffices to isolate an estimator θ̂n and then
upper bound its worst-case expected loss over all P ∈ P. Lower-bounding minimax risk
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is generally much harder, and often requires the use of ineqaulities like that of Le Cam,
Fano, and Assouad. See [YA97]. We recall Le Cam’s lemma because it will be crucial for
the lower bound set up by [KRW16].

Theorem 13 (Le Cam). Let P be a set of probability measures on (Ω,F) and θ : P → Θ
be a statistic. Let S1, S2 ⊂ Θ and define P1,P2 via preimage: Pi = θ−1(Si) for i ∈ {1, 2}.
Let Qi be any distribution in the convex hull of Pi.

Qi ∈ conv(Pi) =
{∑

j

αjPj : αj ≥ 0,
∑
j

αj = 1, Pj ∈ Pi

}
⊂ P i ∈ {1, 2}

Let qi be the density of Qi with respect to a measure µ. Then, for all estimators θ̂,

sup
P∈P

EP
[
d(θ̂, θ(P ))

]
≥ d(S1, S2)

2

∫
[q1(x) ∧ q2(x)]dν(x)

Proof, adapted from [YA97]. For any P1 ∈ P1 and P2 ∈ P2, we have:

M := 2 sup
P∈P

EP [d(θ̂, θ(P ))]

≥ EP1 [d(θ̂, θ(P1))] + EP2 [d(θ̂, θ(P2))]

= EP1 [d(θ̂, S1)] + EP2 [d(θ̂, S2))]

The sample inequality holds replacing Pi with Qi ∈ conv(Pi).

M ≥ EQ1 [d(θ̂, S1)] + EQ2 [d(θ̂, S2)]

=

∫
d(θ̂, S1)q1(x)dν(x) + d(θ̂, S2)q1dν(x)

≥
∫ (

d(θ̂, S1) + d(θ̂, S2)
)
[q1(x) ∧ q2(x)] dν(x)

(triangle inequality) ≥
∫
[d(S1, S2)](q1(x) ∧ q2(x)) dν(x)

Substituting for M gives the desired formula.

Since the inequality holds ∀θ̂, the lower-bound applies to inf θ̂ supP∈P E
[
l(θ̂, θ(P ))

]
which makes this a handy method for lower-bounding the minimax rate.

4.2 Noise Deconvolution Model

We imagine, at first, a very straightforward generative model. Suppose you observe sam-
ples Yj ∈ RD generated as follows:

Yj = Xj + ηj

where ηj ∼ µ and Xj ∼ P , each sampled i.i.d. Suppose we know µ (we think of it
as the noise distribution) and we want to recover P (the signal) based on the empirical
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distribution of Y , call this Q̂. The true distribution is Q = P ⋆ µ, where ⋆ denotes the
convolution operator.

Think even more generally than dimension estimation for a moment. If P is the class
of probability distributions in Rm with compact support, and let τ be any function from
P to non-negative integers Z+. [Kol00] show that the best convergence rate of such an
estimator that one could hope for is exponential.

Proposition 2. Let |τ(P)| ≥ 2. Suppose µ is absolutely continuous with uniformly
bounded density, nonzero Fourier transform, and bounded KL-divergence under affine
shifts. Then there exists q ∈ (0, 1) such that for all large enough n,

inf
τ̂n

sup
P∈P

P[τ̂n ̸= τ(P )] ≥ qn

The natural question is: can we achieve exponential convergence rate for the intrinsic
dimension estimation problem, under this setup? It turns out, the answer is yes. But we
must establish the following modeling assumptions.

Assumption 1. Let P = P(Θ, C) be a distribution on RD such that

• supp(P ) ⊂ B(0, 1)

• The Minkowski dimension dim(E) ∈ [D] (it is crucial that we only consider integer
dimension; if we allow the dimension to be real-valued, as is the case for fractal sets,
then at best we can expect a logarithmic rate of convergence).

• For d = dim(P ), |{B ∈ N (ϵ) : dist(B+, supp(P )) ≤ ϵ}| ≤ Θϵ−d, where B+ denotes
the same ball with radius doubled, and N (ϵ) is any ϵ-cover of supp(P ).

• For ϵ > 0 and for any ball of radius ϵ, P (B) ≤ Cϵd

Key to their analysis is the idea of a deconvolving empirical measure P̂n. Let Ψ
be a symmetric Borel measurable probability measure such that Ψ = K ⋆ µ, where K is a
signed measure of bounded total variation on Rm.

P̂n,Ψ(A) :=
1

n

n∑
j=1

K(A− Yj)

where A is a Borel measurable subset of Rm and A− Yj is the translate of that subset by
Yj . It happens that this deconvolving empirical measure is consistent with the measure
on Ψ, i.e. EP̂n,Ψ(A) = PΨ(A). They use this measure to define first a sort of empirical
covering number,

N̂n = |{B ∈ N (ϵ) : P̂n,Ψ(B) ≥ 2γ}|

and then they use this to construct an empirical estimator for the dimension,

d̂n =
[ log N̂n

log(1/ϵ)
+

1

2

]
(4.1)
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Theorem 14. Suppose ϵ < (Θ−1 ∧ (2C)−1)2/δ(D) and γ < (1/2) ∧ (ϵD/(12Θ)). Suppose
Ψ({x : |x| ≥ ϵ}) ≤ γ. Then there exists Λ > 0 and q ∈ (0, 1) such that:

sup
P∈P

P
[
d̂n ̸= dim(P )

]
≤ Λqn

4.3 Noiseless Model

It is natural to consider: how much did noise hinder our ability to have fast minimax rate?
[KRW16] answer this question precisely.

4.3.1 Problem Formulation

The assumed generative process is a well-behaved probability distribution supported on a
d-dimensional manifold embedded in RD. We define the problem carefully below:

Definition 29 (ID estimation problem with i.i.d. sampling). Let Md
τg ,τl,KI ,Kv

be the set
of compact d-dimensional manifolds M such that:

1. M is suitably bounded, i.e. M ⊂ [−KI ,KI ]
D ⊂ RD.

2. M has global reach at least τg and local reach at least τl.

3. M is locally geodesically complete with respect to τg.

4. M is of essential volume dimension d

Define PKp to be the set of Borel probability distributions P such that:

1. P is supported on a d-dimensional manifold M ∈ Md
τg ,τl,KI ,Kv

.

2. P is absolutely continuous with respect to the restriction volM of the d-dimensional
Hausdorff measure with supx∈M

dP
dvolM

≤ Kp.

Given {xi}i∈[N ] sampled independently and identically distributed from P ∈ PKp, out-
put an estimate for d, the dimension of the supporting manifold.

4.3.2 Lower Bound

As illustrated by Le-Cam’s lemma, we can establish a minimax lower bound if we choose
two distributions P1,P2 such that:

1. There exists Q1 ∈ conv(P1) and Q2 ∈ conv(P2) with significant shared support.

2. Their statistics θ(Pi) map far apart.

These conditions capture a very intuitive criterion: we want to choose distributions
that look similar (condition 2) but have different statistics (condition 1). The parameter
estimation is as hard as the decision problem of distinguishing this particular pair of cases.
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For the ID estimation problem, [KRW16] make use of the fact that a low-dimensional
manifold with high curvature can look very similar to a high-dimensional manifold with
relatively low curvature. Roughly speaking, they define the following pair of distributions:

P1 = {distributions supported on a 1-dimensional space-filling-curve manifold}

P2 = {uniform distributions on [−KI ,KI ]
d2}

From here, we construct a specific set T ⊂ In such that whenever X = X1:n ∈ T , it is
difficult to distinguish whether X ∈ P1 or P2. First we describe T .

Lemma 2. Fix τl ∈ (0,∞], KI ∈ [1,∞), d1, d2 ∈ N with 1 ≤ d1 ≤ d2. Suppose τl ≤ KI .
Then there exist distinct T1, ..., Tn ⊂ [−KI ,KI ]

d2 such that:

• For each Ti, there exists an isometry Φi such that:

Ti = Φi

(
[−KI ,KI ]

d1−1 × [0, a]×BRd2−d1 (0, w)
)

where a,w are appropriate constants.

• There exists M : (BRd2−d1 (0,w))
n 7→ Mτg ,τl,KI ,Kv injective such that for each yi ∈

BRd2−d1 (0, w) and 1 ≤ i ≤ n,

M(y1, ..., yn) ∩ Ti = Φi([−KI ,KI ]
d1−1 × [0, a]× {yi})

In other words, for any choice of xi ∈ Ti for all i ∈ [n], M({Π−1
d1+1:d2

Φ−1
i (xi)}) passes

through x1, ..., xn (where Πa:b denotes projection onto the coordinates a through b).

The crucial idea here is that (1) the Ti are arranged in a zigzag fashion which makes
it sort of space-filling, and (2) we can always find a manifold satisfying the regularity
constraints that passes through all the samples from Ti. The next step is to show that
there exists a convex combination of distributions supported on these space-filling curves
whose probability density is not much different from the uniform distribution.

Lemma 3. Let T = {
∏n

i=1 Tσ(i) : σ ∈ Sn}. Let Q2 be the uniform on [−KI ,KI ]
d2. Let

P1 be as stated earlier. There exists Q1 ∈ conv(P1) such that:

Q1

( n∏
i=1

B(xi, r)
)
≥ 2−n ·Q2

( n∏
i=1

B(xi, r)
)

This demonstrates more generally that q1 ≥ Cq2 for C > 0 a constant. Hence by Le
Cam’s we find, for any estimator d̂n,

sup
P∈Q

EP (n) |d̂n − d(P )| ≥ d2 − d1
2

∫
[q1 ∧ q2]dλ(x)

≥ (d2 − d1)

∫
T
[q1 ∧ q2]dλ(x)

≥ C(d2 − d1) vol(T )

where the last step follows from the fact that q2 is the uniform distribution.
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