
Second-Order Sleeping Experts

Second-Order Bounds for Sleeping Experts

Noah Bergam njb2154@columbia.edu

Arman Özcan ao2794@columbia.edu

Department of Computer Science

Columbia University

New York, NY 10027, USA

Editor: Daniel Hsu

Abstract

In this report we discuss the sleeping experts problem, a variant of online allocation where
only a subset of the experts Et ⊂ [N] are available at each time step t. We compare
the two main benchmarks for regret bounds: one based on the best ranking of experts,
and one based on the best mixture of experts. We show, when either the availability of
experts or the losses are stochastic, the two benchmarks coincide in expectation. We also
demonstrate that the best-ordering loss is NP-hard to compute. Furthermore, we develop
the first beyond-worst-case regret bounds for sleeping experts, replacing the dependence
on the number of rounds with the cumulative variance of the losses over T rounds.

Keywords: online allocation, sleeping experts, second-order bounds

1 Introduction

Learning with experts and multi-armed bandits are prototypical online learning problems.
The key difference between the two lies in the information revealed to the learner: in the
former, the learner sees the loss of every action, whereas in multi-armed bandits, the learner
sees only the loss of the chosen action. Against an oblivious adversary, the former can be
solved with O(

√
T logN) regret by the Hedge algorithm (Littlestone and Warmuth, 1994).

The latter can be solved with O(
√
TN logN) regret by EXP3. Both algorithms are random

and hence the regret bounds are in expectation.
In this report, we study the sleeping experts problem, another partial-information vari-

ant of learning with experts. The complication here is that every day, only a subset Et ⊂ [N]
of experts are observed and available to play. It is not immediately obvious how to define
a regret benchmark in this set-up: comparing experts directly would be inappropriate be-
cause some may play for many more rounds than others. Comparing mixtures of experts
can work, but it is crucial that the loss incurred in each round is normalized by the mass
of awake experts. This gives rise to our first notion of regret for sleeping experts:

Definition 1 The distributional loss of a sleeping experts sequence {(lt, Et)}t∈[T] is

LT,u = LT (u) =
T∑
t=1

1

u(Et)

∑
i∈Et

uilt,i

where pt is the probability vector played by the learner at round t and u ∈ ∆N−1.

©2022 Noah Bergam and Arman Özcan.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-0000.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-0000.html

Bergam and Özcan

The second way, introduced by (Kleinberg et al., 2010), is to measure performance in
terms of a ranking of available actions. Note that, if the manner of choosing an action is
random, the following regret bound is random and hence could be analyzed in expectation.

Definition 2 The rank loss of a sleeping experts sequence {(lt, Et)}t∈[T] is

LT,σ = LT (σ) =
T∑
t=1

lt,σ(Et)

where σ(Et) = mini∈Et σ(i) is the top-ranked awake expert according to some fixed permu-
tation σ ∈ SN , and it is the action chosen by the learner at round t.

Compare these notions to the usual notion of loss for online allocation, LT,i =
∑T

t=1 lt,i.

The main contributions of this paper are as follows:

• We compare the distributional and rank benchmarks in novel detail. We show explicit
examples of the distributional benchmark not being well-defined as a minimum. Fur-
thermore, we find that the distribution and rank benchmark coincide in expectation
when availability of experts or losses is stochastic. We conjecture this equivalence
infu LT (u) = minσ LT (σ) hold in the general adversarial case.

• We present novel second-order bounds for two different settings of sleeping experts.
We derive a O(

√
VARmax

T logN) bound for sleeping experts in a stochastic availability,
Adversarial loss framework, and a O(

√
VARmax

T N logN) bound for the fully Adver-
sarial framework. VARmax

T is a measure of the cumulative variance of the loss vectors,
defined formally in Section 4.

2 Background

In this section, we review the basic definitions and concepts behind the sleeping experts
problem; the major results and open questions; and the applications in prediction problems.

2.1 Definitions

Discrete Sleeping Experts Suppose there are N experts making binary predictions
every day: specifically, expert i on day t predicts xt,i ∈ {0, 1}. Assume that predictions and
true outcomes are from [0, 1]. We define some non-negative loss measure L : [0, 1]2 → [0,∞)
that takes in a prediction and an outcome and outputs a measure of how different they are.
The sleeping experts game proceeds as follows.

• Adversary chooses the set of awake experts Et ⊆ [N] and predictions xt,i for each
awake expert i ∈ Et at time t.

• Learner sees {xt,i : i ∈ Et} and makes a prediction ŷt.

• Adversary chooses outcome yt.

• Learner incurs loss L(ŷt, yt) and each awake expert i incurs loss L(xt,i, yt).

2

Second-Order Sleeping Experts

The goal is to make the total loss of learner,
∑T

t=1 L(ŷt, yt), as small as possible compared
to the total loss of the best fixed mixture of the ”awake” experts, which can be defined as:

min
u∈∆N

T∑
t=1

∑
i∈Ei

uiL(xt,i, yt)∑
i∈Ei

ui

which computes the weighted average loss of the awake experts according to some best-in-
hindsight fixed distribution u ∈ ∆N . Alternatively, we can define the best fixed mixture as
the loss of the weighted average prediction according to best u ∈ ∆N as:

min
u∈∆N

L

(∑
i∈Ei

uixt,i∑
i∈Ei

ui

)

Note that if the loss is convex, a bound on the second implies a bound on the first. Regardless
of which definition above is chosen, denote the loss of fixed mixture of the ”awake” experts
at time t with respect to u as Lu(xt, yt).

(Freund et al., 1997) provided a general method to convert an insomniac algorithm
(where every expert is always awake) and its respective regret bound into a corresponding
sleeping algorithm (where some experts sometimes sleep) and regret bound. Both algorithms
maintain a probability distribution vector pt ∈ ∆N as weights for N experts and define two
general black-box functions predictN and updateN : The function predictN maps the set of
N expert predictions xt and weights pt to a prediction ŷt. The function updateN takes in
the set of N expert predictions xt and weights pt and the true outcome yt and outputs an
updated set of expert weights pt+1. The subscript N is dropped for notational simplicity.
The general form of an insomniac algorithm is as follows:

• See the predictions of experts xt and predict ŷt = predict(xt, pt) at time t.

• See true outcome yt and incur loss L(ŷt, yt).

• Update the weights as pt+1 = update(xt, pt, yt).

which is converted into a sleeping setting as:

• See the predictions of awake experts xEt
t and predict ŷt = predict(xEt

t , pEt
t) at time t.

• See true outcome yt and incur loss L(ŷt, yt).

• Update the weights of awake experts as pEt
t+1 = update(xEt

t , pEt
t , yt) while keeping the

weights of sleeping experts the same and maintaining
∑N

i=1 pt+1,i = 1.

where xEt
t is the set of predictions of awake experts at time t and pEt

t is the set of normalized
weights of awake experts, such that pEt

t,i =
pt,i∑

i∈Et
pt,i

for all i ∈ Et.

Sleeping Expert Allocation We generalize sleeping experts in an analogous manner to
the way the basic learning with experts problem becomes online allocation. The sleeping
expert allocation game (full information) proceeds as follows:

• Every day t = 1, ..., T :

3

Bergam and Özcan

1. Learner commits to an allocation vector pt ∈ ∆N−1.

2. Adversary reveals Et ⊂ [N].

3. Learner samples it ∼ pEt
t and incurs loss lt,it .

4. Adversary reveals lt,i for all i ∈ Et.

We can reduce to the discrete sleeping experts setting with lt,i = L(xt,i, yt) · 1(i ∈ Et)
and predict(xEt

t , pEt
t) = it sampled from pEt

t (note that, in this reduction, we do not use
today’s expert predictions at all). We often care about the expected performance of an
algorithm on the sleeping allocation game, which is given by:

E[lt,it] =
∑
i∈Et

pEt
t,iL(xt,i, yt) =

∑
i∈Et

pt,i∑
i∈Et

pt,i
L(xt,i, yt) =

∑
i∈[N] pt,ilt,i∑
i∈Et

pt,i
=

⟨pt, lt⟩∑
i∈Et

pt,i

Note that, when summed over t, this is very similar to the distribution benchmark, the key
difference being that the algorithm plays a time-varying distribution, whereas the distribu-
tion benchmark is defined according to a fixed distribution.

Furthermore, observe that in the insomniac setting, E[L(ŷt, yt)] = ⟨pt, lt⟩.

Variations Note that we can also consider a partial information (“bandits”) setting of
sleepy online allocation. The only difference is that we remove step 4, and the learner only
gets to see the loss of the chosen action lt,it . In either the full or partial information case of
sleeping experts, we are optimizing the following notion of regret:

RT = Ealg

[T∑
t=1

lt,it

]
−min

(∗)
LT,(∗) (1)

where (∗) depends on the choice of distribution or rank benchmark and the expectation on
the first term is taken with respect to the randomness in the algorithm.

Following the work of (Kleinberg et al., 2010) and (Kanade et al., 2009), we consider
cases where the adversary is restricted to acting according to a fixed distribution, either
when choosing losses or availability of experts.

• Stochastic Availability: Et ∼ Pavail, a fixed distribution over P([N]), every day t.

• Stochastic Loss: Every day t, lt,i ∼ Pt,i with time-invariant mean µt,i = µi for each
i ∈ Et.

We then usually consider regret in some sort of expectation over these distributions. Note
that this may change the notion of benchmarks. For instance, our second-order regret bound
stochastic availability compares performance to minσ EEtLT,σ rather than the expectation
on the outside.

2.2 Results for Sleeping Experts

(Freund et al., 1997) introduced the sleeping experts problem, and, as discussed in the
previous section, proposed a general-purpose framework for converting an insomniac online
learning algorithm into a one that can handle the sleeping case. They also showed that, for

4

Second-Order Sleeping Experts

a log loss L(ŷ, y) = − ln(ŷ)1(y = 1) − ln(1 − ŷ)1(y = 0), a sleeping version of the Bayes
algorithm achieves:

Ealg

T∑
t=1

u(Et)lt,it −
T∑
t=1

uilt,i ≤ KL(u||p1)

where lt,i = L(xt,i, yt) and we use the fact that the log loss is convex (see the original
statement in Theorem 1, Freund et al. (1997)). Ultimately, if we re-weight lt,i → lt,i/u(Et)
and set p1 to a uniform distribution, we achieve RT ≤ ln(N) (for RT defined in 1, with
comparison to the distribution benchmark).

(Blum and Mansour, 2007) discuss a generalization of sleeping experts where, in effect,
experts can be partially awake. More precisely, they discuss a notion of external regret where
we consider performance against a collection of time-selection functions I : [T] → [0, 1].
The regret of an algorithm alg compared to an expert i ∈ [N] with respect to time-selection
function I is given by:

Ralg
i,I =

T∑
t=1

I(t)
[
lt,alg(t) − lt,i

]
= Lalg,I − Li,I

The sleeping experts problem can be seen as a specialization of this in the following sense:
consider pairs (u, i, Iu,i) for each i ∈ [N] and u ∈ ∆N−1, where Iu,i(t) = ui

u(Et)
1(i ∈ Et).

Then we recover the distributional regret as follows:

N∑
i=1

Ralg
i,Iu,i

=
N∑
i=1

Lalg,Iu,i−Li,Iu,i =
T∑
t=1

∑
i∈Et

ui
u(Et)

(lt,alg(t)−lt,i) =
T∑
t=1

lt,alg(t)−
T∑
t=1

∑
i∈Et

ui
u(Et)

lt,i︸ ︷︷ ︸
Lt,u

(Kleinberg et al., 2010) introduced the rank benchmark for sleeping experts and sketched
how the time-selection model of (Blum and Mansour, 2007) can also reduce to it. Namely,
define triples (σ, i, Iσ,i) where Iσ,i(t) = 1(i = σ(Et)). Then we have:

N∑
i=1

Ralg
i,Iσ,i

=
T∑
t=1

∑
i:i=Et

(lt,alg(t) − lt,i) =
∑
t=1

lt,alg(t) −
T∑
t=1

lt,σ(Et)︸ ︷︷ ︸
Lt,σ

Note that the sum over i disappears since exactly one i = σ(Et) for each round t.
These vignettes suggest that the time-selection framework is quite general. However,

that generality comes at a cost; the regret bounds obtained by (Blum and Mansour, 2007)
are sub-optimal, both in terms of computational runtime and the information-theoretically
necessary number of rounds. (Kleinberg et al., 2010) points out that directly applying their
guarantee that

max
I∈I

min
i∈[N]

Ri,I ≤
√
(max

I
min
i

LI,i) log(N · |I|) + log(N · |I|)

gives regret bound O(
√
Tn2 log n+ n log n) for the rank regret (and does not apply to the

distribution settings, since |{Iu : u ∈ ∆N−1}| is infinite).

5

Bergam and Özcan

(Kleinberg et al., 2010) improves on this bound, showing that an application of Hedge
on N ! experts (one for each permutation) achieves O(

√
TN logN). In the partial infor-

mation setting, EXP4 with N ! experts and N actions achieves O(N
√
T logN). Both are

information-theoretically optimal (in the sense that they prove matching lower bounds).
The difficulty is that the algorithms are not computationally efficient, as they require the
maintenance of N ! weights.

(Kleinberg et al., 2010) also develops bounds for the stochastic loss. In the full-information
case, they have a lower bound of Ω(

∑n
i=1(µi − µi+1)

−1) where the µi means of all the ex-
perts are listed in descending order. This lower bound is a achieved by an algorithm they
dub Follow the Awake Leader (FTAL).(Kanade et al., 2009) extends this work by studying
the sleeping experts model under stochastic action availability. Most notably, they find an
efficient algorithm for stochastic availability and Adversarial losses, which we further extend
in this paper (to accomodate second-order bounds).

2.3 Results for Second-Order Bounds

Recall that the standard Hedge bound, from (Littlestone and Warmuth, 1994), is given by

RT,k =

T∑
t=1

⟨pt, lt⟩ −
T∑
t=1

lt,k ≤ lnN

η
+ η

T∑
t=1

l2t,k

If we assume lt,k ∈ [0, 1], we can bound the rightmost term by T and then tune η using
the doubling trick to arrive at a O(

√
T logN) bound. If we had hindight knowledge of the

losses, we could get a O(
√

(
∑T

t=1 l
2
k,t) logN) regret bound, which would be nice since it

adapts to the hardness of the problem (if the losses are largely small, we expect to converge
faster). Unfortunately, as explained by (Gaillard et al., 2014), standard tuning methods
like the doubling trick cannot immediately fix this issue (since the optimal η would depend
on a non-monotone sequence).

There are, however, workarounds that allow us to replace T with some sort of second-
order statistic. (Hazan and Kale, 2010) had one of the first results in this direction, replacing
T with the maximum cumulative variance of loss for the optimal expert, VARmax

T : see
Section 4, Equation 2 for the precise definition. This bound is uniform over all experts.
(Gaillard et al., 2014) replaces this with an expert-dependent second-order bound:

RT,k ≲

√√√√lnN
T∑
t=1

(
⟨pt, lt⟩ − lk,t

)2
∀k ∈ [N]

Finally, there are other notions of beyond worst case bounds for online allocation, which,
loosely speaking, address the logN rather than the T in the Hedge bound. Let p1 be
the initial setting of weights for online allocation (the prior). Quantile bounds like that of
(Chaudhuri et al., 2009) isolate K such that:

min
k∈K

RT,k ≲
√

T ln(1/p1(K))

Note that this reduces to the original bound if our prior p1 is uniform and |K| = 1. The
hope is that K is a large set, such that we can guarantee that it’s worst member does better

6

Second-Order Sleeping Experts

than the lnN bound. (Koolen and Van Erven, 2015) presents an algorithm that combines
second-order and quantile methods.

3 Relating the Notions of Regret

In this section, we compare two notions of cumulative loss. We find that the optimization
of the distribution loss is not straightforward.

Definition 3 Define the best distributional and rank benchmark, respectively, as:

L
(dist)
T = inf

u∈∆N−1

LT (u) and L
(rank)
T = min

σ∈SN

LT (σ)

3.1 On Computing the Benchmarks

In this section, we consider the problem of actually computing the distribution and rank
benchmarks, assuming offline access to the loss vectors. Our first observation is that mini-
mizing LT (u) is a non-convex, ruling out guarantees for gradient-based methods.

Claim 1 There exists l1, .., lT such that the distribution loss LT (u) = LT (u; l1, ..., lT) is
non-convex in u.

Proof Consider the following loss table:

Expert 1 Expert 2 Expert 3

Round 1 asleep 0 1

Round 2 0 1 asleep

Round 3 1 asleep 0

Table 1: Non-convexity of distribution loss with respect to u.

Consider the weight vectors u1 = (1− ϵ, ϵ, 0) and u2 = (ϵ, 0, 1− ϵ) for arbitrarily small
ϵ > 0. Then,

LT (u1) = 0 + ϵ+ 1 = 1 + ϵ and LT (u2) = 1 + 0 + ϵ = 1 + ϵ

Take the average of two weight vectors: u′ = u1+u2
2 = (1, ϵ, 1− ϵ)12 . Then,

LT (u
′) = (1− ϵ) +

ϵ

1 + ϵ
+

1

2− ϵ

For example, for ϵ = 1/4, LT (u
′) ≈ 1.52 but LT (u1) = LT (u2) = 1.25. In fact, as ϵ

approaches 0, LT (u
′) → 1.5 but LT (u1) = LT (u2) → 1. Hence, LT (u) is not convex.

Note that above example also proves that the best ranking of experts is not unique. The
rankings σ1 = (1 − 2 − 3) and σ2 = (3 − 1 − 2) both minimize the rank loss and give
LT (σ1) = LT (σ2) = 1.

While computing the distribution benchmark is a continuous optimization problem, the
rank benchmark is a combinatorial problem. A brute force solution takes superexponential
time O(N !). If Et = [N] every day (insomniac setting) then the best ranking is easily

7

Bergam and Özcan

computed as σ∗ = sorti(
∑T

t=1 lt,i) in increasing order. Also, as shown in sections below, if
either losses or expert availabilities are stochastically chosen, it is again easy to compute
the best ranking. It turns out that best ranking just amounts to sorting losses, either the
average losses or the total losses across all time steps, depending on whether the losses are
stochastic or not.

For the case when Et and lt are both adversarial, however, there is no efficient algorithm
to our knowledge that finds the best ranking. Naive approaches such as ordering according
to the total losses incurred by each expert or the total number of time steps each expert
“wins” (has the smallest loss) do not give the best ranking. It is not even true that the best
expert provides the smallest total loss in the time steps that it is awake at. Consider the
following setup:

Expert 1 Expert 2 Expert 3

Round 1 asleep 1 100

Round 2 1 100 0

Round 3 1 10 0

Table 2: Demonstrating that the best expert need not provide the smallest total loss in the
time steps where it is awake.

For the best ranking, Expert 3 must be behind Expert 2 and Expert 2 behind Expert
1, which leads to the best ranking of σ∗ = 1−2−3, which suffers the rank loss LT (σ

∗) = 3.
However, note that Expert 1 suffers total loss of 2 in the rounds that it is awake, whereas
Expert 2 suffers 0 for the same rounds.

Indeed, we find that calculating the best ranking is NP-hard in general. We state the
problem below.

• Best-Ordering for Sleeping Experts (BOSE): Given loss vectors l1, ..., lT ∈ RN
+ ,

expert availabilities E1, ..., ET ⊂ [N], and L > 0, compute σ∗ = argminσ∈SN

∑T
t=1 lt,σ(Et).

Note that, using binary search, we can use an oracle for this problem to find the loss of
the optimal σ. The problem is clearly in NP, where σ is the certificate. However, if BOSE
is an NP-hard problem, computing the best rank loss is clearly also NP-hard, as is finding
the optimal ranking.

Theorem 1 BOSE is an NP-complete search problem.

Proof It is clear that BOSE is in NP (σ∗ being the certificate for the corresponding decision
problem). To show NP-hardness, we proceed via a reduction from minimum feedback arc
set (MFAS for short), a well-known NP-hard problem. Start with an instance of G = (V =
[n], E). Let the experts correspond to vertices, and the rounds correspond to directed edges.
For each round e = (i → j) ∈ E, the awake experts are the adjacent vertices i and j (i.e.
Eu = {i, j}). The loss vector is as follows:

for e = (i → j) le,i = 0 le,j = 1

8

Second-Order Sleeping Experts

So the BOSE loss becomes:∑
(i→j)∈E

le,σ({i,j}) =
∑

(i→j)∈E

1[j = σ({i, j})] =
∑

(vi→vj)∈E

1[j = argmin
j′∈{i,j}

σ(j′)]

=
∑

(vi→vj)∈E

1[σ(j) < σ(i)]

On the RHS, we recover exactly the objective function for MFAS. Hence, a black-box solver
for BOSE gives us a poly-time algorithm for MFAS.

3.2 Relationship between Benchmarks

The first observation is that there are some instances where the best rank loss is less than
any fixed distributional loss, only becoming equal to the infimum of distributional loss. For
example, consider the following three-round game:

Claim 2 There exist instances of sleeping expert allocation where infu LT (u) is not attained
and infu LT (u) = minσ LT (σ).

Proof Consider the following three-round game, where each entry represents the loss of
an expert at a given round, unless that expert is asleep.

Expert 1 Expert 2 Expert 3

Round 1 asleep 1 2

Round 2 3 asleep 4

Round 3 5 4 asleep

Table 3: Simple game where the infimum of the distribution loss is not attained.

Observe that best ranking of experts is σ∗ = 2 − 1 − 3, which gives rise to the best

rank loss L
(rank)
T = 8. It suffices to show, given any fixed distribution u = (u1, u2, u3),

there exists u′ such that LT (u
′) ≤ LT (u). First of all, if u3 > 0, taking u′3 = 0 will always

decrease the loss, because every round Expert 3 is awake, its loss is greater than the other
awake expert. For u3 = 0, we have u1 = 1− u2. Note that u2 cannot be zero as otherwise
the loss in Round 1 would not be well-defined (likewise with u1 and Round 2). Thus the

loss will be 1+3+5(1−u2)+4u2 = 9−u2 → 8 = L
(rank)
T asymptotically, as u2 approaches 1.

To our knowledge this has not been observed in the literature. Indeed, in previous
literature, the distributional benchmark has been written incorrectly as a minimum.

Corollary 1 The definition of distribution benchmark given by (Freund et al., 1997) as
minu∈∆N−1

Ld(u) (instead of infu∈∆N−1
Ld(u) as defined here) is ill-defined.

The construction in this example lends itself to the question: can we use the optimal
ordering of experts to construct an optimal distribution (in the limit)? While we fall short
of showing this in the general case of adversarial losses and availability, we show a similar
statement when we relax one or the other to be stochastic.

9

Bergam and Özcan

3.2.1 Adversarial Losses and Availability

When the losses and experts availabilities are both Adversarially chosen, we conjecture that
one can construct an optimal distribution based on the optimal ordering. We define this
construction below.

Definition 4 Fix l1, ..., lT loss vectors and let σ∗ = argminσ LT (σ). Define the ϵ-rank-
induced distribution as:

u(ϵ) = σ∗(1, ϵ, ..., ϵN−1)Zϵ

where Zϵ =
1−ϵ
1−ϵn (for normalization).

Question 1 Does limϵ→0 LT (u
(ϵ)) = infu LT (u) for all l1, ..., lT ∈ RN

+?

Together with the following lemma, this would imply that the rank benchmark is always
dominated by the distribution benchmark.

Lemma 1 limϵ→0 LT (u
(ϵ)) = minσ LT (σ).

Proof More concretely, we would like to show:

lim
ϵ→0

T∑
t=1

1

u(ϵ)(Et)

∑
i∈Et

u
(ϵ)
i lt,i =

T∑
t=1

lt,σ∗(Et)

Fix a day τ . Note that, for all i ∈ Eτ \ {σ∗(Eτ)}, we have:

u
(ϵ)
i /u

(ϵ)
σ∗(Eτ)

≤ ϵ → 0 as ϵ → 0

So u
(ϵ)
i /u(ϵ)(Eτ) → 1[i = σ∗(Eτ)]. Then loss per day becomes lτ,σ∗(Eτ).

If either losses or expert availabilities are chosen stochastically, and we analyze the
optimal σ or u for the expected rank or distribution loss, then indeed the rank-induced
distribution is indeed optimal in the limit. In the fully Adversarial case, this is not as clear:
this is because there is no clear priority of experts.

3.2.2 Stochastic Losses and Adversarial/Stochastic Availability

The above analysis assumed that the losses and availability of experts are both Adversarially
chosen. In this section, we assume that the losses are chosen stochastically:

Claim 3 Suppose lt,i ∼ Pt,i with time-invariant mean µt,i = µi for all t ∈ [T] and i ∈ [N].
Consider two separate cases: 1) Et ∼ Pavail for all t ∈ [T], 2) Et’s are chosen Adversarially
for all t ∈ [T]. In either case,

min
σ

E[LT (σ)] = inf
u
E[LT (u)]

and the infimum is achieved as ϵ → 0 by u(ϵ) the rank-induced distribution.

10

Second-Order Sleeping Experts

Proof The expected rank loss is computed for two cases as follows:

E[LT (σ)] =
T∑
t=1

∑
E⊂[N]

P(E)E[lt,σ(E)] = T
∑

E⊂[N]

P(E)µσ(E) (Stochastic Availability)

E[LT (σ)] =

T∑
t=1

E[lt,σ(Et)] =

T∑
t=1

µσ(Et) (Adversarial Availability)

In either case, the expected rank loss is minimized by σ∗ = sorti{µi} in descending order.
That is because always choosing the smallest-average-loss expert among all available experts
in any set E (or Et) minimizes the total loss in expectation. Now consider the expected
distribution loss for some u ∈ ∆N−1.

E[LT (u)] =
T∑
t=1

∑
E⊂[N]

P(E)
∑
i∈E

ui
u(E)

E[lt,i] = T
∑

E⊂[N]

P(E)
∑
i∈E

ui
u(E)

µi (Stochastic Availability)

E[LT (u)] =

T∑
t=1

∑
i∈Et

ui
u(Et)

E[lt,i] =
T∑
t=1

∑
i∈Et

ui
u(Et)

µi (Adversarial Availability)

In either case, to minimize the expected cumulative loss, one should choose the distribution
u such that ui

u(E)µi (and
ui

u(Et)
µi) is minimized for each set E (and Et). The more the expert

with the smallest-average-loss in each given set E (and Et) is weighted, the smaller ui
u(E)µi

(and ui
u(Et)

µi) will get. To accomplish that, the weight vector u should be chosen such that

the normalized weight of the smallest-average-loss expert in any set E (and Et) dominates
all other normalized weights of experts in that E (and Et). This is best accomplished by
choosing the rank-induced distribution u(ϵ) = σ∗(1, ϵ, ..., ϵN−1)Zϵ (where the indices of u(ϵ)

follows the best ranking σ∗) for small ϵ.

As ϵ → 0, u
(ϵ)
i /u(ϵ)(Et) → 1(i = σ(Et)), and the distributional loss will approach the

rank loss. Thus, minσ E[LT,σ] = infu E[LT,u].

3.2.3 Adversarial Losses and Stochastic Availability

In this section, we assume that the losses are adversarially chosen but the expert availabil-
ities are chosen stochastically:

Claim 4 Suppose lt,i’s for all t ∈ [T] and i ∈ [N] are chosen adversarially and Et ∼ Pavail

for all t ∈ [T]. Then, minσ E[LT (σ)] = infu E[LT (u)].

11

Bergam and Özcan

Proof The rank loss is given by:

LT (σ) =
T∑
t=1

∑
E⊂[N]

P(E)lt,σ(E)

=
∑

E⊂[N]

P(E)
T∑
t=1

lt,σ(E)

=
∑

E⊂[N]

P(E)LT,σ(E) where LT,σ(E) =
T∑
t=1

lt,σ(E)

Note that Pavail is fixed. Then to minimize the rank loss, among the experts in any set
E, one must always follow the expert whose total loss over all rounds is the smallest. To
achieve that, one must rank the experts in the increasing order of their total losses over all
rounds. That is, σ∗ = sorti(

∑T
t=1 Lt,i) in increasing order. See Claim 5 for a more detailed

proof of this idea.
Meanwhile, the distributional loss is:

LT (u) =
T∑
t=1

∑
E⊂[N]

P(E)
1

u(E)

∑
i∈E

uilt,i

=
∑

E⊂[N]

∑
i∈E

P(E)
ui

u(E)

T∑
t=1

lt,i

=
∑

E⊂[N]

P(E)
∑
i∈E

ui
u(E)

LT,i where LT,i =
T∑
t=1

lt,i

To minimize the distributional loss, for any set E, one must put as much weight as
possible to the expert in the set E with the smallest total loss over all rounds, LT,i. Thus,
again it suffices to choose the rank-induced distribution u(ϵ) = σ∗(1, ϵ, ..., ϵN−1)Zϵ, hence
minσ E[LT,σ] = infu E[LT,u].

4 Second-Order Bounds for Sleeping Experts

In this section, we seek to take the usual bounds for sleeping experts and replace the
dependence on T with a measure of variation in the loss vectors:

VARmax
T = max

t≤T
{VARt,i∗t

} = max
t≤T

{ t∑
s=1

(ls,i∗t − µt,i∗t
)2
}

(2)

where i∗t = argmini{
∑t

s=1 lt,i} is the best expert up until round t and µt,i =
1
t

∑t
s=1 ls,i.

In the usual (non-sleeping) online allocation problem, one can achieve O(
√
VARmax

T logN)
regret, using a variant of Hedge developed by (Hazan and Kale, 2010).

12

Second-Order Sleeping Experts

For the sake of completeness, we review the Variation MW algorithm and give a brief
sketch of how its regret bound arises.

Algorithm 1 Variation MW

Initialize w1,i = 1 for all i ∈ [N].
for day t = 1, ..., T do

Play pt = wt/∥wt∥1.
Update weights:

wt+1,i = wt,i exp
(
− η (lt,i + 4η(lt,i − µt,i)

2)︸ ︷︷ ︸
l̃t,i

)

Incur loss ⟨pt, lt⟩.
end for

Theorem 2 Let η = min{1/10,
√
logN/VARmax

T }. Then Variation MW achieves.

T∑
t=1

⟨pt, lt⟩ −min
i

T∑
t=1

lt,i ≤ 8
√
VARmax

T logN + 10 logN

Since VARmax
T increases with T , the correct η can be learned via the doubling trick.

The proof proceeds as follows:

• Instead of analyzing VARt,i directly, analyze

Qt,i =
t−1∑
s=1

(ls,i − µs,i)
2

which is an asymptotic proxy for VARt,i. Specifically, Q
max
t ≤ 4VARmax

t .

• Define gt = l̃t−αt1 where αt = µt,i∗t
+4ηQt,i∗t

/t. Apply the standard Hedge guarantee

to gt as the sequence of loss vectors. Since exp(−η
∑

t gt,i) and exp(−η
∑

t l̃t,i) only
differ by a constant factor (independent of i), the weight updates are equivalent, so
the guarantee gives us:

T∑
t=1

⟨l̃t, pt⟩ −
T∑
t=1

l̃t,i∗T ≤ η
T∑
t=1

⟨g2t , pt⟩+
logN

η

Simplifying gives us an upper bound of:

η

T∑
t=1

〈
g2t − 4(ft − µt)

2, pt

〉
+ 4η(Qmax

T + 1) +
logN

η

• From here, it suffices to show the sum in the first term is on the order of Qmax
T . We

refer the reader to (Hazan and Kale, 2010) for the details of this calculation.

13

Bergam and Özcan

4.1 Stochastic Availability, Adversarial Loss

It turns out there is an efficient algorithm with O(
√
T logN) regret for sleeping experts in

the setting where the adversary is oblivious, the availability of experts is chosen according
to a fixed probability distribution, and the losses are chosen Adversarially. This is shown
in (Kanade et al., 2009). We get the same guarantee for sleeping experts with stochastic
availability. Our proof is similar to that of (Kanade et al., 2009) but instead of applying
the usual Hedge guarantee, apply the variation-adaptive guarantee from (Hazan and Kale,
2010). We call our algorithm Variation MW for Sleeping Setting (VMWS).

Algorithm 2 Variation MW for Sleeping Setting (VMWS)

Initialize w1,i = 1 for all i ∈ [N].
for day t = 1, ..., T do

Observe Et ∼ µavail

Play qt where qt,i = wt,i/
∑

i∈Et
wt,a for i ∈ Et.

Play it, incur lt,it loss.
Observe full loss vector lt.
Update weights:

wt+1,i =

{
wt,i exp

(
− η(lt,i + 4η(lt,i − µt,i)

2)
)

i ∈ Et

wt,i i ̸∈ Et

where µt = (1/t)
∑t−1

s=0 lt.
end for

Theorem 3 If η = min{1/10,
√

logN/VARmax
T }, algorithm VMWS has regret

E
[T∑
t=1

lt,it − min
σ∈SN

EEt

T∑
t=1

lt,σ(Et)

]
≤ O

(√
VARmax

T logN
)

where the other expectation is taken with respect to the inherent randomness in the algorithm.

Note, by Jensen’s inequality, that

min
σ∈SN

EEt

T∑
t=1

lt,σ(Et) ≥ EEt min
σ∈SN

T∑
t=1

lt,σ(Et) = E[L(rank)
T]

So a regret bound with respect to E[L(rank)
T] is a bit stronger than Theorem 8. The reason

we use this slightly modified notion of rank regret is that it is easier to analyze. Consider
the following claim (not directly related to the algorithm, just a statement about the nature
of stochastic availability). It tells us that, under a fixed distribution of expert availability,
the best post-hoc ordering of experts is given by simply sorting the post-hoc losses.

Claim 5 Let σ∗ = argminσ EE1,...,Et

∑T
t=1 lt,σ(Et). Then σ∗ = sorti(

∑T
t=1 lt,i) (ascending)

14

Second-Order Sleeping Experts

Proof Let pσ,i = PE(σ(E) = i) = PE(minj∈E σ(j) = i), where E ∼ µavail. Note that
pid,i = PE(minE = i), so pid,1 ≥ ... ≥ pid,n. This implies that pσ is ordered in descending
order by σ.

EEt

T∑
t=1

lt,σ(Et) =

T∑
t=1

∑
E⊂[N]

P(Et = E) · lt,σ(E)

=

T∑
t=1

∑
i∈[N]

P(σ(Et) = i) · lt,i

=
T∑
t=1

⟨pσ, lt⟩ = ⟨pσ,
T∑
t=1

lt⟩

Without loss of generality, suppose
∑T

t=1 lt is arranged in ascending order. Note that σ∗

minimizing the above expression is such that pσ∗ matches its largest values with the smallest
values of

∑
t lt (since everything is non-negative). Hence, σ∗ = sorti(

∑T
t=1 lt,i) (pσ descend-

ing, loss ascending).

Proof Consider a fixed action set E ⊂ [N]. Let i∗ = argmini∈E
∑T

t=1 lt,i. Applying the
bound from Theorem 4 of (Hazan and Kale, 2010) for the Variation MW algorithm, we
have the following regret bound:

T∑
t=1

∑
i∈A

qt,ilt,i −
T∑
t=1

lt,i∗ ≤ 8
√

VARmax
T logN + 10 logN︸ ︷︷ ︸

bound

Let σ∗ be the post-hoc best action list, given by σ∗ = sorti(
∑

t=1 lt,i) as per Claim 1. Then

i∗ = σ∗(A) where σ∗ = argminσ EEt [
∑T

t=1 lt,σ(Et)]

Eit

[T∑
t=1

lt,it − min
σ∈SN

EEt

[T∑
t=1

lt,σ(Et)

]]
= Ei1,...,iT

T∑
t=1

EEt

[∑
i∈Et

Eit|i1,...,it−1

[
lt,it

]
− lt,σ∗(Et)

]

(Claim 1) =
T∑
t=1

EEt

[∑
i∈Et

qt,ilt,i − lt,i∗
]

=

T∑
t=1

∑
E⊂[N]

P(Et = E)
[∑
i∈Et

qt,ilt,i − lt,i∗
]

=
∑

E⊂[N]

P(Et = E)
(T∑

t=1

∑
i∈Et

qt,ilt,i − lt,i∗
)

≤
∑

E⊂[N]

P(Et = E) · bound

= bound

15

Bergam and Özcan

Note that in first steps, we use tower property to be precise about the nature of the ran-
domness in the algorithm.

4.2 Adversarial Availability and Loss

There is a simple but inefficient algorithm to deal with the case where availability of experts
is adversarial. The idea is to transform the problem into an insomniac setting with N !
experts, each one corresponding to a permutation on N elements. Each expert predicts
σ(Et) for each round t.

Theorem 4 Using Variation MW with N ! weights, one per permutation on [N], we achieve:

E
[T∑
t=1

lt,it −min
σ

T∑
t=1

lt,σ(Et)

]
≤ O

(√
VARmax

T N logN +N logN
)

where it is the action chosen by the algorithm at time t and the expectation is made over
the randomness in the algorithm.

Proof An immediate application of the Variation MW algorithm achieves:

T∑
t=1

∑
σ∈SN

pσlt,σ(Et) −min
σ

T∑
t=1

lt,σ(Et) ≤ 8
√
VARmax

T logN ! + 10 logN !

Observe that log(N !) ≤ N logN , and the first term is the expectation.

5 Conclusion

There are a few interesting open questions that follow naturally from this work. First of all,
can we extend the beyond worst-case analysis of sleeping experts? While the application
of second-order bounds is fairly immediate, what are the challenges of applying quantile
bounds? Could we extend the work of (Chaudhuri et al., 2009) to develop parameter-free
hedging for sleeping experts?

There is also more work to be done in regard to the comparison between rank and
distribution loss for sleeping experts. It is left as conjecture whether these losses coincide
for the case when both losses and action availability are adversarial. It would also be
interesting to settle whether computing the rank loss is truly an NP-hard problem.

Acknowledgments

The authors would like to thank Daniel Hsu for his feedback in the writing process, and for
providing the idea for the reduction from minimum feedback arc set.

16

Second-Order Sleeping Experts

References

Avrim Blum and Yishay Mansour. From external to internal regret. Journal of Machine
Learning Research, 8(6), 2007.

Kamalika Chaudhuri, Yoav Freund, and Daniel J Hsu. A parameter-free hedging algorithm.
Advances in neural information processing systems, 22, 2009.

Yoav Freund, Robert E Schapire, Yoram Singer, and Manfred K Warmuth. Using and
combining predictors that specialize. In Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing, pages 334–343, 1997.

Pierre Gaillard, Gilles Stoltz, and Tim Van Erven. A second-order bound with excess losses.
In Conference on Learning Theory, pages 176–196. PMLR, 2014.

Elad Hazan and Satyen Kale. Extracting certainty from uncertainty: Regret bounded by
variation in costs. Machine learning, 80:165–188, 2010.

Varun Kanade, H Brendan McMahan, and Brent Bryan. Sleeping experts and bandits
with stochastic action availability and adversarial rewards. In Artificial Intelligence and
Statistics, pages 272–279. PMLR, 2009.

Robert Kleinberg, Alexandru Niculescu-Mizil, and Yogeshwer Sharma. Regret bounds for
sleeping experts and bandits. Machine learning, 80(2):245–272, 2010.

Wouter M Koolen and Tim Van Erven. Second-order quantile methods for experts and
combinatorial games. In Conference on Learning Theory, pages 1155–1175. PMLR, 2015.

Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Information
and computation, 108(2):212–261, 1994.

17

	Introduction
	Background
	Definitions
	Results for Sleeping Experts
	Results for Second-Order Bounds

	Relating the Notions of Regret
	On Computing the Benchmarks
	Relationship between Benchmarks
	Adversarial Losses and Availability
	Stochastic Losses and Adversarial/Stochastic Availability
	Adversarial Losses and Stochastic Availability

	Second-Order Bounds for Sleeping Experts
	Stochastic Availability, Adversarial Loss
	Adversarial Availability and Loss

	Conclusion

