
We	say	the	loss	function	has	a	symmetry if	a	non-identity	transformation	of	embedding	
leaves	the	loss	value	the	same.	We	found	an	infinite	family	of	symmetries.

It	is	easy	to	find	a	non-identity	transformation	of	the	distance	matrix	which	preserves	the	
objective.	The	hard	part	of	the	proof	is	showing	that	this	transformation	of	the	distances	is	
still	Euclidean-embeddable.	This	involves	the	use	of	Gram	matrices	and	some	topological	
reasoning	about	the	positive-semidefinite	cone.
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t-SNE formulation and pathological cases…

Works	Cited:	
[HS02]:	Geoffrey	Hinton	and	Sam	Roweis.	Stochastic	neighbor	embedding.	Advances	in	Neural	Information	Processing	Systems	(2002).
[AHK21]: Sanjeev	Arora,	Wei	Hu,	and	Pravesh K	Kothari.	An	analysis	of	the	t-SNE	algorithm	for	data	visualization.	In	Conference	on	learning	theory,	pages	1455–1462.	PMLR,	2018.
[LR19]:	George	C	Linderman	and	Stefan	Steinerberger.	Clustering	with	t-SNE,	provably.	SIAM	Journal	on	Mathematics	of	Data	Science,	1(2):313–332,	2019.
[CM22]:	T	Tony	Cai	and	Rong	Ma.	Theoretical	foundations	of	t-SNE	for	visualizing	high-dimensional	clustered	data.	The	Journal	of Machine	Learning	Research,	23(1):13581–13634,	2022.
[MH08]:	Laurens	Van	der	Maaten and	Geoffrey	Hinton.	Visualizing	data	using	t-SNE.	The	Journal	of	Machine	Learning	Research,	9(11),	2008.
[DHKLU21]:	Demaine,	Erik,	et	al.	"Multidimensional	scaling:	Approximation	and	complexity." International	Conference	on	Machine	Learning.	PMLR,	2021.

A slight symmetry, as an artifact of normalization

Diameter bound and open questions

Low-diameter t-SNE approximates 
Laplacian Eigenmaps: A new demonstration

Background:	t-distributed	stochastic	neighbor	embedding	(t-SNE),	created	
by	[MH08,	HS02],	is	a	nonlinear	dimensionality	reduction	algorithm,	provably	
good at	visualizing	cluster	structure	in	high-dimensional	data	[AHK21,	LS19].

Problem: Gradient-based	optimization	(practical	implementation)	only	shows	
us	local	minima	of	the	t-SNE	objective.	
Goal:	What	can	we	say	about	global	minima	or	the	t-SNE	objective	function?

We	think	of	t-SNE	as	a	graph	embedding	problem	(more	general	than	its	original	
formulation	as	a	metric	embedding).		
• Given:	an	N×N	“affinity”	matrix	(Pij)	with	zero	diagonal,	symmetric,	non-negative,	

and	all	entries	sum	to	1.	
• Construct	low-dimensional	points	(yi)	and	

a	corresponding	affinity	matrix	(Qij),	
computed	as	follows

• Find	(yi)	which	minimizes	the	Kullback-
Leibler divergence	(relative	entropy)	of	
(Pij)	with	respect	to	(Qij).

An	(new)	advantageous	
way	of	rewriting our loss:

Observation	1:	Non-metric	embeddable	graphs	such	as	stochastic	block	models	and	
“clique-path”	graphs	are	still	well-clustered	by	t-SNE.
Observation	2:	However,	this	generalization	admits	simple	examples	cases	where:
• The	optimal	embedding	is	trivial
• No	optimal	embedding	exists	(i.e. the	infimum	of	the	objective	isn’t	attained)

t-SNE	on	non-metric	graphs.	Capable	
of	clustering	planted	partition	graphs	
with	p	as	low	as	0.55

Illustration	of	two	“pathological”	cases	of	the	t-SNE	embedding,	
and	how	gradient	descent	optimization	does	not	converge	but	
rather	contracts	(top)	and	expands	(bottom)	indefinitely.	

[CM22]	established	a	rigorous	connection	between	gradient-optimized	t-SNE	and	spectral	
clustering.	We	build	upon	this	connection,	showing	that	the	t-SNE	objective,	in	low-diameter	
regimes,	is	approximately	equal	to	the	objective	of	Laplacian	eigenmaps,	a	spectral	method.

The	proof	is	simple	and	involves	mostly	Taylor	expansions	on	the	loss	function. It	is	relevant	
because	the	canonical	implementation	of	t-SNE	is	in	a	small	radius	of	[0.01,0.01]2,

We	prove	that	a	P	matrix with	non-zero	off-diagonal	entries	will	always	yield	an	optimal	t-SNE	
embedding.	Furthermore,	we	find	that	this	optimal	embedding	will	occur	within	a	finite	radius	
dependent	on	the	number	of	points	n	and	the	smallest	off-diagonal	entry	in	P.	

This bound is likely not tight.	In	well-clustered	settings,	can	show	a	much	tighter	n2 dependence.

Remaining	questions	are	centered	on	the	hardness	and	approximability	of	t-SNE.
• Is	t-SNE	optimization	NP-hard?	Perhaps reduce	from	NAE-3SAT* or	multi-terminal	cuts?
• Can	we develop a poly-time	approximation	scheme	(PTAS)	for	t-SNE,	in	a	similar	vein	as	

[DHKLU21]’s	PTAS	for	multi-dimensional	scaling?	The	crucial	first	step	towards	this	is	a	tighter	
diameter	bound––this	would	allow	us	to	efficiently	discretize	the	input	space	and	turn	this	
continuous	problem	into	a	discrete	one,	upon	which	we	can	apply	greedy	methods.
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