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Background: t-distributed stochastic neighbor embedding (t-SNE), created

by [MHo8, HSo2], is a nonlinear dimensionality reduction algorithm, provably
good at visualizing cluster structure in high-dimensional data [AHK21, LS19)].

us local minima of the t-SNE objective.

Problem: Gradient-based optimization (practical implementation) only shows

Goal: What can we say about global minima or the t-SNE objective function?

Low-diameter t-SNE approximates
Laplacian Eigenmaps: A hew demonstration

|CM22] established a rigorous connection between gradient-optimized t-SNE and spectral
clustering. We build upon this connection, showing that the t-SNE objective, in low-diameter
regimes, is approximately equal to the objective of Laplacian eigenmaps, a spectral method.

Theorem 10 (Approximate Spectral Clustering). Let y = (y1,...yn) € R"™! and a mod-
ified (but still equivalent for optimization purposes) t-SNE objective function Lp(y)

t-SNE formulation and pathological cases...

We think of t-SNE as a graph embedding problem (more general than its original
formulation as a metric embedding).

Given: an NxN “affinity” matrix (P;) with zero diagonal, symmetric, non-negative,
and all entries sum to 1.

Construct low-dimensional points (y;) and
a corresponding affinity matrix (Q;),

computed as follows
Find (y;) which minimizes the Kullback-
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Leibler divergence (relative entropy) of
(P;) with respect to (Q;).
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Observation 1: Non-metric embeddable graphs such as stochastic block models and

An (new) advantageous
way of rewriting our loss:
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contraction

“clique-path” graphs are still well-clustered by t-SNE.
Observation 2: However, this generalization admits simple examples cases where:
* The optimal embedding is trivial
* No optimal embedding exists (i.e. the infimum of the objective isn’t attained)
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[llustration of two “pathological” cases of the t-SNE embedding,
and how gradient descent optimization does not converge but
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KL(P||Q(y)) — H(P) — In(n® — n). If diam(y) :=d, < 1, then:
" L(P — Hy,)y— Lp(y)| = O(n’d})
where L(-) is the graph Laplacian of an n X n matrix and H, = ﬁ(IIT —I,).

The prootf is simple and involves mostly Taylor expansions on the loss function. It is relevant
because the canonical implementation of t-SNE is in a small radius of [0.01,0.01]3,

A slight symmetry, as an artifact of normalization

We say the loss function has a symmetry if a non-identity transformation of embedding
leaves the loss value the same. We found an infinite family of symmetries.

Theorem 1. For almost every (y1,...,yn) =Y € R there exists an € > 0 and an infinite
family of embeddings {Y,}}aca C R such that:

1D(Y) — D(Y)|leo € (0,6) and Lp(Y)=Lp(Y,) VYacA

where D(Y) is the matriz of squared distances, [D(Y)]i; = ||lvi — y;l|*-

It is easy to find a non-identity transformation of the distance matrix which preserves the
objective. The hard part of the proof is showing that this transformation of the distances is
still Euclidean-embeddable. This involves the use of Gram matrices and some topological
reasoning about the positive-semidefinite cone.

Diameter bound and open questions

We prove that a P matrix with non-zero off-diagonal entries will always yield an optimal t-SNE
embedding. Furthermore, we find that this optimal embedding will occur within a finite radius
dependent on the number of points n and the smallest off-diagonal entry in P.

Proposition 7 (Diameter Bound). Giwen a P matriz with min;; P;; > C%n for C' € Ry,
there exists an optimal embedding Y* with diameter O(n™/°). Specifically:

JY* € R™ s.t. max ||y —¢|| < 2n"C

TRTAD 4

where Lp(Y*) < Lp(Y) for all Y € R,

This bound is likely not tight. In well-clustered settings, can show a much tighter n> dependence.

Remaining questions are centered on the hardness and approximability of t-SNE.

 Is t-SNE optimization NP-hard? Perhaps reduce from NAE-3SAT" or multi-terminal cuts?

« (Can we develop a poly-time approximation scheme (PTAS) for t-SNE, in a similar vein as
|[DHKLU?21]|’s PTAS for multi-dimensional scaling? The crucial first step towards this is a tighter
diameter bound--this would allow us to efficiently discretize the input space and turn this
continuous problem into a discrete one, upon which we can apply greedy methods.
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