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1 Elements

Measure: Given a σ-algebra F of subsets of Ω, a measure is a non-negative, countably
additive set function m : F → [0,∞] such that m(ϕ) = 0.

• A measure is finite if m(Σ) < ∞. It is a probability measure if m(Σ) = 1.

• A pre-measure ν : A → [0,∞] defined on the algebra A is a countably additive non-
negative set function, assigning m(ϕ) = 0.

• A measure µ on (Ω,F) is σ-finite if there exists
⋃

n∈N En = Ω with µ(En) < ∞.

Measurable Function: A measurable function X : (Ω,F , µ) → G where G is a metric space
is F -measurable if for every Borel set B ∈ B(G), X−1(B) ∈ F .

• The Borel sets of G comprise the smallest sigma-algebra generated by the open sets in
G (we have open sets because it is a metric space and hence a topological space).

• This measurable function provides an induced measure G, given by µX = µ ◦X−1.

• This measure, in turn, induces a distribution function FX(t) = µX((−∞, t]).

• Question: Can we go the other way? Given a non-decreasing, right-continuous function
F : R 7→ R, can I construct µF such that µF (I) = F (b)− F (a) for every I = (a, b]?

The Caratheodory-Hahn Extension Theorem says: yes.

Sigma-Algebra: A σ-algebra F ⊂ P(Ω), where Ω is a set of events, is closed under countable
unions and complements.

• The sigma-algebra generated by some set is the smallest sigma-algebra containing that
set (i.e. the intersection of all sigma-algebras containing that set).

• The sigma-algebra generated by a random variable X : Ω → R is the sigma-algebra
generated by the set of pre-images of X, i.e. σ(X) = X−1(B(R)).

• A filtration Fn is a increasing sequence of sigma-algebras, usually generated as Fn =
σ(X0, X1, ...)

Independence: Two events A,B are independent if P(A ∩B) = P(A)P(B).

• A set of events are independent if, for every subset, the probability of the intersections
is the product of the events.

• Two random variables X, Y are independent if, for all B1, B2 ∈ R, {X ∈ B1} is
independent of {Y ∈ B2}.
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• A sequence of events is independent if every finite subset is independent. Likewise with
a sequence of random variables.

Types of Convergence: Consider (Xn)n∈N a sequence of random variables.

• Pointwise: for all ω ∈ Ω, limnXn(ω) = X(ω).

• Almost everywhere: for a.e. ω ∈ Ω, limnXn(ω) = X(ω).

• In probability: for all ϵ > 0, we have limn→∞ P(|Xn −X| ≥ ϵ) = 0.

• Complete: for all ϵ > 0, we have
∑

n∈N P(|Xn −X| ≥ ϵ) < ∞.

• In Distribution: Let F be the distribution of X and Fn be the distribution of Xn.
For all t a continuity point of F , we have limn→∞ Fn(t) = F (t). Equivalently, we have:

lim
n→∞

µn(Xn ≤ t) = µ(X ≤ t)

• Vague/Weak: For all Φ continuous and bounded, limn→∞ E(Φ(Xn)) = E(Φ(X)).

• Lp: limn→∞ E(∥Xn −X∥p) = 0

Some notable facts.

• Convergence almost everywhere implies convergence in probability.

If a sequence converges in probability, it converges completely along a subsequence.

• Complete convergence implies convergence almost everywhere by Borel-Cantelli.

• Convergence in Lp implies convergence almost everywhere along a subsequence.

• Convergence in probability is metrizable (i.e. there exists a metric on random variables
which is equivalent), but convergence almost everywhere is not.

2 Limits

2.1 Inferior and Superior

Recall the definitions of limit superior and inferior for sequences. These are important con-
cepts because the limit does not always exist; in order to show it exists, rigorously, we need
to show that the limit inferior equals the limit superior.

lim inf
n→∞

xn = lim
k→∞

inf
n≥k

xn = sup
k∈N

inf
n≥k

xn
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lim sup
n→∞

xn = lim
k→∞

sup
n≥k

xn = inf
k∈N

sup
n≥k

xn

We define the definition of limit superior and inferior for sets similarly.

lim inf
n→∞

En = {En, ev.} =
⋃
k∈N

⋂
n≥k

En

lim sup
n→∞

En = {En, i.o.} =
⋂
k∈N

⋃
n≥k

En = {
∑
n∈N

1En = ∞}

The same idea is behind all of these. The inner process is, in the case of the limit inferior, an
increasing sequence (the infimum of a smaller and smaller thing), and we take the supremum
(or union) over this.

2.2 Major Limit Theorems

Take probability space (Ω,F ,P). Let (Xn)n∈N be a sequence of non-negative random
variables. Let (En)n∈N be a sequence of events.

Monotone Convergence Theorem: If 0 ≤ X1 ≤ X2 ≤ ... pointwise, and Xn → X almost
everywhere, then:

lim
n→∞

∫
Ω

Xn =

∫
Ω

X

Fatou’s Lemma: No additional hypotheses.∫
Ω

lim inf
n→∞

Xn ≤ lim inf
n→∞

∫
Ω

Xn

Dominated Convergence Theorem: Suppose that there exists an integrable Y with
|Xn| ≤ Y pointwise for all n. Then, if Xn → X almost everywhere, then we may interchange
limit and integral.

lim
n→∞

∫
Ω

Xn =

∫
Ω

X

3 Foundations of Measure Theory

We have defined a measure, but we have yet to actually construct the most important measure
of all: the Lebesgue measure on the Borel sets of the real line! We also want a process for
obtaining the Lebesgue-Stieltjes measure given a non-decreasing right continuous (i.e.
distribution) function.

The process is as follows:
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1. We reduce the problem of finding a measure to the problem of finding an outer measure.

2. We construct an outer measure in terms of a very minimal set function ν : ξ → [0,∞].

3. If this set function ν is a pre-measure (with ξ an algebra), then ν and µ∗ agree on ξ;
and if ν is σ-finite, then µ is the unique measure on σ(ξ) that restricts to ν on ξ.

First, we establish two definitions

• Outer Measure: A set function µ∗ : P(Ω) 7→ [0,∞] which assigns the empty set zero
measure, preserves inequality between subsets, and is countably subadditive.

• Pre-measure: ν : ξ → [0,∞] is a pre-meaasure if it assigns the empty set zero measure
and it is countably additive.

Caratheodory Characterization: Let µ∗ : P(Ω) 7→ [0,∞] be an outer measure and
consider the family M of subsets E of Ω which satisfy:

µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A ∩ EC)

Then M is a sigma-algebra and µ∗|M is a measure.

Caratheodory Construction of an Outer Measure: Take ν : ξ → [0,∞] which only
satisfies ϕ,Ω ∈ ξ and ν(ϕ) = 0. Then the following is an outer measure on P(Ω):

µ∗ = inf
{∑

n∈N

ν(En) : (En)n∈N ∈ Ω, A ⊂
⋃
n∈N

En

}
Hahn Extension Theorem: Take the same setup as before. Assume ξ is an algebra and
ν is a pre-measure (countably additive, assigns zero measure to the empty set). Then, if we
define µ = µ∗|σ(ξ), we have the following:

1. σ(ξ) ⊂ M and µ|ξ = µ∗|ξ = ν.

2. For any measure ρ on σ(ξ) which satisfies ρ|ξ = ν, we have the following (with equality
when µ(A) < ∞),

ρ(A) ≤ µ(A) for all A ∈ σ(ξ)

3. If ν is σ-finite, then µ is the unique measure of σ(ξ) with µ|ξ = ν, i.e. the unique
extension of the pre-measure ν on ξ to a measuer σ(ξ).
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4 Major Classical Results

4.1 Zero-One Laws

Borel-Cantelli Lemmata: Given a sequence of events (En)n∈N, we have:

• If
∑

n∈N P(En) = ∞, then P(En, i.o.) = 0.

• If
∑

n∈N P(En) = ∞ and (En)n∈N is independent, then P(En, i.o.) = 1.

Kolmogorov Zero-One Law: Take a sequence of random variables (Xn)n∈N. Consider the
tail sigma-algebra, defined as follows.

τ =
⋂
n∈N

τn =
⋂
n∈N

σ(Xn, Xn+1, ...)

If (Xn)n∈N is independent, then for all A ∈ τ , P(A) = 0 or P(A) = 1.

In other words, modulo sets of measure zero, τ = {Σ, ϕ}. The tail sigma-algebra is trivial.

Hewitt-Savage Zero-One Law: Define ξn ⊂ Fn as the collection of sets that are invariant
under permutation of the first n coordinates, i.e. for all (X1 ∈ B1, ..., Xn ∈ Bn) ∈ ξn and
σ ∈ Sn, we have π(A) = (Xπ(1) ∈ Bπ(1), ..., Xπ(n) ∈ Bπ(n)) ∈ ξn. Let ξ =

⋂
n∈N ξn.

If X1, X2, ... is independent, then ξ is trivial (analogous to the Kolmogorov zero-one law).

4.2 Classical Concentration of Measure

Weak Law of Large Numbers: If (Xn)n∈N are independent and identically distributed such
that limn→∞ nP(|X1| > n) = 0, then 1

n
Sn−µn → 0 in probability, where µn = E(Xn ·1|X1|≤n)

• The weak law can apply in cases where we have infinite expectation. Consider Xk

such that P(X1 = ±n) = c
n2 log(n)

. The idea is that P(Xn ≥ k) is on the order of

1/(n log(n)), the series of which does not converge. So E(Xn) = ∞). However, it
does satisfy limn→∞ nP(|X1| > n) = 0. So WLLN applies and SLLN does not; in fact,
we know convergence almost everywhere cannot happen because by Borel-Cantelli,
P(|Sn| > n/2, i.o.) = 1. So the limsup and liminf of the sample mean is plus or minus
infinity in this case.

(Etemadi) Strong Law of Large Numbers: Given (Xn)n∈N pairwise independent, iden-
tically distributed, with E(|X1|) < ∞ we have:

1

n

n∑
i=1

Xn → 0 , a.e.
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• We can use this to prove a certain weak convergence of an observed distribution to a
true distribution.

• Recall Kolmogorov’s zero-one law. Recall that {limn Sn/n exists in R} is in the tail
sigma-algebra (it is not affected by changing finitely many elements in the sequence).
So this told us that this event is in a trivial tail sigma algebra. The SLLN assures us
that it is in a set of full measure rather than zero measure.

Central Limit Theorem: Given independent and identically distributed (Xn)n∈N with
finite variance σ2 and expectation m, we have the following convergence in distribution.∑n

i=1(Xi −m)

σ
√
n

→ N (0, 1)

• Standard proof uses equivalence of vague convergence and convergence in distribution.

4.3 Markov Chains

When do Markov Chains possess an invariant measure:

• If Markov chain is irreducible and recurrent, then it has an invariant measure (con-
verse is false; take the simple symmetric random walk on the number line). It is given
by (γk

i )i∈S. Note γ
k
k = 1. This is minimal and unique up to scalar multiplication. Note

also that mk = Ek(Tk) =
∑

i γ
k
i .

γk
i = Ek(

Tk−1∑
n=1

1{Xn=i})

• If Markov chain is irreducible, then it is positive recurrent if and only if it has an
invariant probability distribution. The distribution is given by (γk

i /mk)i∈S; this is well-
defined because mk < ∞!

• If the Markov chain is irreducible, then it is clearly also closed (you can only stay
within this communicating class). So if it is finite then, by class properties theorem,
it is recurrent. In fact, it is positive recurrent because there are only finitely many γk

i

so they add up to a finite mk. So there is an invariant probability measure!

Convergence to Equilibrium: If (Xn)n∈N isMC(P, λ) irreducible, recurrent, and possesses
an invariant distribution π. Then the following limit exists for j ∈ S the state space:

lim
n→∞

P(Xn = j) = πj

In particular, limn→∞ p
(n)
ij = πj. It does not matter my starting state i.

6



njb2154
Noah J. X. Bergam Probability Theory

MATH4155
December 28, 2023

4.4 Lp Spaces

Let Lp be the set of random variables such that the following quantity is finite.

∥X∥p =
(∫

Ω

|X|pdP
)1/p

Minkowksi Inequality: General triangle inequality

∥X + Y ∥p ≤ ∥X∥p + ∥Y ∥p

Jensen’s Inequality: For f convex and X integrable, we have:

f(E(X))) ≤ E(f(X))

Lyapunov Inequality: For 0 < p < q ≤ ∞, Lq ⊂ Lp since:

∥X∥p ≤ ∥X∥q

Hölder’s Inequality: For 1
p
+ 1

q
= 1

∥XY ∥1 ≤ ∥X∥q∥Y ∥p

Cauchy-Schwarz Inequality: Special case of Hölder for p = q = 2. Special because L2 is
famous a Hilbert space and the the left-hand side is the inner product.

⟨XY ⟩ ≤ ∥X∥2∥Y ∥2
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