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1 Week 1: Review of Conditional Expectation

Definition 1. Let µ, ν be two measures on the same probability space (Σ,F).

We say µ ≪ ν (absolutely continuous) if ν(A) = 0 =⇒ µ(A) = 0.

We say µ ⊥ ν (singular) if ∃A ∈ F such that ν(A) = 0 and µ(AC) = 0.

We say µ ∼ ν (equivalent) if µ ≪ ν ≪ µ.

Theorem 1 (Radon-Nikodym). Let µ be a σ-finite measure and ν a finite measure on (Ω,F).
Then there exists a unique (up to µ-almost everywhere equivalence) function h : Ω → [0,∞)
integrable with respect to µ such that:

ν(A) =

∫
A

h(ω) dµ(ω)

Theorem 2 (Pinsker-Csiszar Inequality).

2∥µ− ν∥2TV ≤ D(ν|µ)

Theorem 3 (Existence of Conditional Expectation). On (Σ,F ,P) let X be an integrable
random variable and G a sub-σ-algebra of F . Then there exists a P-almost everywhere unique
random variable H : Ω → R, denoted H = E(X | G) such that:∫

G

HdP =

∫
G

HdP ∀ G ∈ G

In equivalent notation:

EP[H · 1G] = EP[X · 1G] ∀ G ∈ G

Proof. Suppose X ≥ 0. Then G → ν(G) =
∫
G
X dP is a measure, and finite by integrability

of X (ν(Ω) = E(X) < ∞). By Radon-Nikodym Theorem, there exists H : Ω → [0,∞) such
that ν(G) =

∫
G
H dP which proves the claim.

2 Week 2: Stopping Times and Doop Decomposition

Definition 2. A filtration F = (Fn)n∈N is an increasing sequence of σ-algebras.

A filtered probability space is a triple (Ω,F ,F).
A sequence of random variables (Yn)n∈N on (Ω,F ,F) is:

• Adapted if σ(Yn) ⊂ Fn for all n.

• Predictable if σ(Yn) ⊂ Fn−1 for all n.
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A stopping time τ : Ω → N0 ∪ {∞} is a measurable map s.t. {ω : τ(ω) ≤ n} ∈ Fn ∀n.

Definition 3. To any τ a stopping time we can associate a σ-algebra of events generated up
to that stopping time. This is the subset of measurable sets such that their intersection with
{τ ≤ n} if Fn measurable for all n, i.e.

Fτ = {A ∈ F : A ∩ {τ ≤ n} ∈ Fn ∀n}

Definition 4. A martingale on a filtered probability space (Ω,F ,P,F) is a sequence of
random variables (Xn)n∈N such that:

(martingale) E(Xn | Fm) = Xm ∀m ≤ n

We also define increasing and decreasing counterparts.

(supermartingale) E(Xn | Fm) ≤ Xm ∀m ≤ n

(submartingale) E(Xn | Fm) ≥ Xm ∀m ≤ n

We can also define martingales in continuous time, with a filtration (Ft)t∈[0,∞) and with s ≤ t
real numbers.

Theorem 4 (Doob Decomposition). Every submartingale X can be rewritten as Xn =
Mn + An with M a martingale and A non-decreasing. If A is chosen to be predictable,
this decomposition is unique.

Theorem 5 (Doob’s Optional Sampling). On a filtered probability space consider a super-
martingale X and a stopping time τ . Then we have E(Xτ ) ≤ E(X0) provided that any of the
following hold:

• τ is bounded.

• X is bounded (exists a uniform upper bound for all n).

• X is finite in expectation and X has bounded increments.

3 Week 3: Uniformly Integrable, Square-Integrable

Theorem 6 (Doob Martingale Convergence). If a supermartingale X is suitably lower
bounded, i.e. supn∈N X

−
n < ∞, then X∞ = limn→∞Xn exists (almost everywhere) and is

integrable, E(|X∞|) < ∞.
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3.1 Uniformly Integrable Martingales

Definition 5. A family {Xα}α∈A s called uniformly integrable if:

lim
λ→∞

sup
α∈A

E[|Xα| · 1{|Xα|>λ}] = 0

Bounded in Lp for p > 1 =⇒ Uniformly Integrable =⇒ Bounded in L1.

Theorem 7 (Generalized DCT). Let (Xn) converge in probability to X. TFAE:

• (Xn) are uniformly integrable.

• Xn → X in L1, i.e. E(|Xn|) → E(|X|) or E(|Xn −X|) → 0.

Definition 6 (Levy Martingale). Let X be an integrable random variable and Fn an arbitrary
filtration. Then Xn = E(X | Fn) is a martingale.

Remark 1. Uniformly integrable martingales are Levy martingales!

Theorem 8. Let X be a martingale. Then the following are equivalent:

• X is uniformly integrable.

• X converges in L1 to some X∞ ∈ L1.

• X converges a.e. to some X∞ and becomes a martingale with last element.

• There exists integrable Z such that E(Z | Fn) = Xn.

Theorem 9. The origin is absorbing for a non-negative supermartingale, i.e. for τ =
min{n ≥ 0 : Xn = 0} we have Xτ+k = 0 for all k ∈ N for X a martingale

Proof. We use the following important fact: for stopping times σ ≤ τ , E(Xτ | Fσ) = Xσ

(mutatis mutandis with super and sub). For us, 0 ≤ E(Xτ+k) ≤ E(Xτ ) ≤ 0.

3.2 Square-Integrable Martingales

Definition 7. For M such that E(M2
n) < ∞ for all n (square integrable) define the quadratic

variation or bracket ⟨M⟩ to be the unique predictable sequence that makes M2
n − ⟨M⟩ a

martingale (by Doob decomposition). More explicitly, we may write: ⟨M⟩0 = 0 and

⟨M⟩n =
n∑

k=1

[
E(M2

k | Fk−1)−M2
k−1

]
=

n∑
k=1

E
[
(Mk −Mk−1)

2 | Fk−1

]
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Theorem 10 (Pythagorean Relationship). For M a square integrable martingale, non-
overlapping intervals are orthogonal, so:

E
[
(Mn+j −Mn)

2
]
=

n+j∑
k=n+1

E
[
(Mk −Mk−1)

2
]

Definition 8. For M,N square integrable martingales define the cross-variation or cross-
bracket with ⟨M,N⟩0 = 0 and:

⟨M,N⟩n =
n∑

k=1

E
[
(Mk −Mk−1)(Nk −Nk−1) | Fk−1

]
Lemma 1. MN − ⟨M,N⟩ is a martingale if M,N are square integrable martingales.

Proof. Take j ≥ 0. Expand definition and apply martingale property.

E
[
⟨M,N⟩n+j − ⟨M,N⟩n

∣∣∣ Fn

]
= E

[ n+j∑
k=n

E
[
(Mk −Mk−1)(Nk −Nk−1) | Fk−1

] ∣∣∣ Fn

]
=

n+j∑
k=n

E
[
(Mk −Mk−1)(Nk −Nk−1) | Fn

]
= E

[
Mn+jNn+j −MnNn

∣∣∣ Fn

]

Definition 9. M,N are orthogonal if ⟨M,N⟩ = 0.

Theorem 11 (Convergence). For M a square-integrable martingale, limn→∞Mn exists al-
most everywhere on the event {⟨M⟩∞ < ∞}.

Theorem 12 (SLLN). For M a square-integrable martingale:

lim
n→∞

Mn

1 + ⟨M⟩n
= 0 a.e. on {⟨M⟩∞ = ∞}

Theorem 13 (Kolmogorov Three-Series). For (ξn)n∈N the series
∑

n ξn converges in the reals
if and only if the following hold for some K ∈ (0,∞).

•
∑

n P(|ξn| > K) < ∞

•
∑

n E(ξn · 1{|ξn|≤K}) converges in R.

•
∑

nVar(ξn · 1{|ξn|≤K}) < ∞.
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3.3 Markov Chains

Definition 10. For g : S → R a numerical characteristic of some Markov Chain with state
space S and transition probabilities {pij}i,j∈S, define:

(Πg)(i) =
∑
k∈S

pik g(k)

• g is harmonic if Πg = g.

• g is super-harmonic if Πg ≤ g.

• g is sub-harmonic if Πg ≥ g.

Remark 2. The following is a martingale, for Xn a Markov Chain:

M g
0 = 0 M g

n = g(Xn)− g(X0)−
n∑

i=1

[
(Πg)(Xn)− g(Xn)

]
Theorem 14. Every non-negative superharmonic function on an irreducible, recurrent Markov
Chain is constant.

4 Week 4: Some Optimization

4.1 Discrete Time Optimal Stopping

Let Sm denote the set of stopping times ≥ m.

Optimal Stopping Problem: Take Y a sequence of non-negative, integrable random vari-
ables. Find τ ∗ ∈ S0 which maximizes E(Yτ ).

Trivial Case: Consider a deterministic process {Yn}n∈N, with F = {Ω, ϕ}. We want p such
that Yp = supn∈N Yn. A sophisticated way to study this: check that:

p∗ = min{p ∈ N : sup
n≥p

Yn = Yp}

satisfies Yp∗ = sup
n≥p∗

Yn = sup
n≥1

Yn

In general, Zn = supm≥n Yn is a supermartingale (rather than decreasing), and we find that:

τ ∗ = inf{n ≥: Yn = Zn}

It turns out that this supermartingale is of the form:

Zn = ess sup
τ∈Sn

E(Yτ | Fn) (1)
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Definition 11 (essential supremum existence). For every family F of random variables,
there exists a unique (a.e.) random variable g : Ω → R ∪ {±∞} such that:

• g ≥ f for all f ∈ F .

• If h : Ω → R ∪ {±∞} is another random variable with property (i), then h ≥ g.

We denote g = ess sup(F )

Lemma 2. For every adapted sequence {Yn} of integrable random variables satisfying E(supn∈N0
Y +
n ) <

∞ the random variables {Zn} as defined in (1) form an adapted integrable sequence satisfying:

Zn = max
{
Yn,E(Zn+1 | Fn)

}
E(Zn) = sup

τ∈Sn

E(Yτ )

Indeed, Zn is the smallest nonnegative supermartingale that dominates Yn. We call it the
Snell Envelope of Yn.

4.2 Martingale Inequalities

Theorem 15 (Doob’s Submartingale Inequality). For a submartingale {Xn} we have:

P
(

max
0≤n≤N

Xn ≥ λ
)
≤ E(X+

N)

λ
∀λ > 0, N ∈ N

Theorem 16 (Kolmogorov’s Inequality). For independent {ηn} with mean zero and finite
variance, we have:

P
(

max
1≤n≤N

∣∣∣ n∑
j=1

ηj

∣∣∣) ≤ 1

λ2

n∑
j=1

E(η2j )

Proof. Xn =
∑n

j=1 ηj is a martingale and by Jensen’s X2
n is a submartingale, so apply Doob’s

and use the cancellation from independence.

Theorem 17 (Azuma-Hoeffding). Let Mn be a martingale, with M0 = 0 and P(|Mn+1 −
Mn| ≤ rn) = 1 for some sequence {rn}. Then, for some universal C > 0, we have

P(|Xn| > λ) ≤ 2 exp
(
− λ2

2
∑n

k=1 r
2
k

)
(2)

∥Xn∥p ≤ C

√√√√p

n∑
k=1

r2k (3)
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4.3 Stochastic Approximation

Root-Finding Problem, with Noise: Suppose h : R → R is continuously differentiable.
Not known globally but can be measured locally, and we know it has one root θ. Newton-
Raphson method solves this problem under suitable conditions. But once we add noise to
our measurements the premise falls apart.

Theorem 18. Under suitable conditions, wherein a function h : R → R has a unique root
h(θ) = 0. Then, for any real-valued gains sequence {γn} with∑

n

γn = ∞
∑
n

γ2
n < ∞

the following stochastic approximation algorithm converges P-a.e. to θ.

θn+1 = θn − γn+1 · yn+1 = θn − γn+1

[
h(θn) + ϵn+1

]
Remark 3. Robbins and Siegmund use the following to make the above argument work.

Lemma 3 (Almost-Supermartingale Convergence). On a filtered probability space, consider
non-negative adapted sequences {Zn} and {Dn} which satisfy:

E(Zn+1|Fn) ≤ (1 + bn)Zn + cn −Dn

for sequences of non-negative constants {bn} and {cn} with
∑

n∈N(bn+cn) < ∞. Then almost
everywhere we have: ∑

n

Dn < ∞ lim
n→∞

Zn exists in R

5 Week 5: Processes with Independent Increments

Definition 12 (Poisson Process). Let {ηn} be a sequence of independent exponential random
variables with parameter λ. The Poisson process is:

N(t) = max{n : t ≥
n∑

i=1

ηi}

Theorem 19 (Properties of Poisson Process). Let (Nt)t≥0 be a Poisson process.

• (Poisson Distribution) P(N(t) = n) = exp(−λt) (λt)
n

n!

• (Independent increments) N(t+ s)−N(t) is independent of N(s).

Definition 13. The Wiener Process is a stochastic process W (t) such that:
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• W (0) = 0

• t → W (t) are almost surely continuous.

• For any finite sequence 0 = t0 < t1 < ... < tn and Borel Sets A1, ..., An

P(W (t1) ∈ A1, ...,W (tn) ∈ An) =

∫
A1

· · ·
∫
An

n∏
i=1

p(ti − ti−1, xi−1, xi) dx1 · · · dxn

p(t, x, y) =
1√
2πt

exp
(−(x− y)2

2t

)
• (Can replace 3 with: independent, stationary, and Gaussian increments)

• (Can replace 3 with: Wt and W 2
t − t are martingales, by Levy)

Remark 4. W (t) is Gaussian distributed with variance t.

Theorem 20. E[WsWt] = min{s, t}

Proof. Let t ≥ s and write Wt = Ws + (Wt −Ws). Then:

E[WsWt] = E(W 2
s ) + E(Wt −Ws)W(Ws) = s

Theorem 21 (Construction of Brownian Motion). The Haar functions form an orthonormal
basis for the Hilbert space L2([0, 1]). They are defined as follows:

h00(t) = 1 h01(t) = 1{t < 1/2} − 1{t ≥ 1/2}

and for i ∈ N and j = 1, 2, ..., 2i define:

hij(t) = 2i/21
{
t ∈

(2j − 2

2i+1
,
2j − 1

2i+1

)}
− 2i/21

{
t ∈

(2j − 1

2i+1
,
2j

2i+1

)}
On a complete probability space construct {Zij} an infinite array of independent copies of the
standard normal. Then the following is Brownian motion:

Wt = Z00

∫ t

0

h00(s)ds+
∑
i∈N

2i∑
j=1

Zij

∫ t

0

hij(s)ds

It is easy to check that E(W 2
t ) = t.

E(W 2
t ) = (⟨χ[0,t], h00⟩)2 +

∑
i∈N0

∑
j∈[2i]

(⟨χ[0,t], hij⟩)2 = ∥χ[0,t]∥2 = t

Here we recall Parseval’s indentity, ⟨f, g⟩ =
∑

i,j⟨f, hij⟩⟨g, hij⟩.
The hard part of this construction is showing continuity.
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6 Week 6: Path Properties of Brownian Motion

Definition 14. For f : [0, T ] → R the first variation is:

V1(f) = lim sup
∥π∥→0

n−1∑
i=1

|f(ti+1)− f(ti)|

where π = (t0 = 0, t1, ..., tn = T ) and ∥π∥ = maxi |ti+1 − ti|.

Lemma 4. Let tni partition [0, T ] into equal parts.

lim
n→∞

n−1∑
i=0

[W (tni+1)−W (ti)]
2 = T

Proof. Show limn→∞[
∑n−1

i=0 [W (tni+1) −W (ti)]
2 − T ]2 = 0. Expand and use independence of

increments and the fact that E(W 4
t ) = 3t2.

Theorem 22. For almost everywhere ω, f(t) = W (t, ω) has infinite first variation.

Remark 5. This makes it such that
∫ T

0
f(t)dW (t) not well-defined by ordinary Riemann-

Stieltjes integration, since the paths have infinite variation.

Theorem 23. With probability 1, W (t) is non-differentiable for all t ≥ 0.

Remark 6. For Wt Brownian motion, exp(Wt − t/2) is a martingale.

Proof. Wt −Ws is a normal random variable with mean 0 and variance t− s. Hence:

E(exp(Wt −Ws)) =

∫ ∞

−∞
ex p(t− s, 0, x)︸ ︷︷ ︸

1√
2π(t−s)

exp( −x2

2(t−s)
)

dx = e(t−s)/2

∫ ∞

−∞
p(t− s, 0, x− t)dx︸ ︷︷ ︸

=1

Definition 15 (Progressively Measurable). {Xt} is progressively measurable with respect to
a filtration {Ft} if for all t ≥ 0 and A ∈ F

{(s, ω) : s ∈ [0, t], ω ∈ Ω, Xs(ω) ∈ A} ∈ B([0, t])⊗Ft

Definition 16 (Strong Markov Process). A progressively measurable {Xt} with filtration
{Ft} on a space (Ω,F) is a strong Markov Process with initial distribution µ if:

• Pπ(X0 ∈ A) = µ(A) for all A ∈ F .

• For any stopping time S on {Ft}, t ≥ 0, and A ∈ F

Pπ(XS+t ∈ A|Xs) = Pπ(XS+t ∈ A|F+
s ) a.e. on {S < ∞}

Theorem 24. Brownian Motion is a martingale and a strong Markov process.
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7 Week 7: Foundations of Ito Integration

We want to define It(X) =
∫ t

0
Xs dWs.

Definition 17 (Bracket, Continuous Doob Decomposition). For every nonconstant square-

integrable (local) martingale M with continuous sample paths, let (t
(n)
k )k∈2n denote the dyadic

partition of M ’s support. Then we have:

⟨M⟩ = lim
n→∞

∑
k

(
M(t

(n)
k+1)−M(t

(n)
k )

)2

and ⟨M⟩ is the unique process with continuous and non-decreasing paths such that M2−⟨M⟩
is a (local) martingale.

Definition 18. A process X is simple if there exists a partition 0 = t0 < t1 < ... < tr <
tr+1 = T such that Xs(ω) = θj(ω) for s ∈ (tj, tj+1] where θj is an Ftj -measurable r.v.

Naturally, for a simple process X

It(X) =

∫ t

0

Xs dWs =
r∑

j=0

θj(Wt∧tj+1
−Wt∧tj)

Remark 7. This integral on simple functions is clearly a martingale with continuous sample
paths and E(It(X)) = 0. For simple processes X and Y , it’s square integrable with:

⟨I(X)⟩t =
∫ t

0

X2
u du ⟨I(X), I(Y )⟩t =

∫ t

0

Xu · Yu du

Theorem 25 (Characterization of the Stochastic Integral). Suppose some continuous local
martingale H satisfies:

⟨H,N⟩t =
∫ t

0

Xu d⟨M,N⟩u

for every continuous local martingale N . Then H = IM(X).

Theorem 26 (Ito Isometry). For f a bounded simple process

E
[(

IW (f)
)2]

= E
[( ∫ T

0

f(t, ω) dWt(ω)
)2]

= E
[ ∫ T

0

f(t, ω)2 dt
]

Remark 8. The isometry allows us to define the integral. We create a sequence of simple
processes to approximate a given continuous process. In the end, the limit exists, because we
can relate it the RHS and a Cauchy sequence in L2 which is famously a Hilbert space.
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8 Week 8: Basics of Ito Calculus

Definition 19 (local martingale). A process (Mt)t≥0 is a local martingale if there exists an
non-decreasing sequence of stopping times (τn)n≥1 such that

• {Mt∧τn}t≥0 is martingale for all n.

• P(limn→∞ τn = ∞) = 1.

Remark 9 (local implies super). A local martingale bounded from below is a supermartingale.
Let Mt ≥ 0 be such a local martingale.

E(Mt|Fs) = E(lim inf
n→∞

Mτn∧t|Fs) ≤ lim inf
n→∞

E(Mτn∧t|Fs) = lim inf
n→∞

E(Ms) = E(Ms)

To apply Fatou we needed bounded from below.

This observation leads us also to notice that any bounded local martingale is fully a martingale
(establish submartingality using the upper bound and you are done).

Theorem 27 (General Ito’s Rule). For f ∈ C2(R) we have:

f(Mt) = f(M0) +

∫ t

0

f ′(Ms)dMs +
1

2

∫ t

0

f ′′(Ms)d⟨M⟩s

Definition 20 (Notion of Solution). A general first-order stochastic differential equation
(SDE) can be written in the following form:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt

A strong solution to SDE on a given probability space (Σ,F ,P) with respect to the fixed
Brownian motion W and initial condition ξ if X is adapted to the filtration generated by the
initial condition and the Brownian filtration, it starts at the initial condition P-almost surely,
the β and σ are P-square integrable, and it indeed satisfies the equation on the space.

A weak solution is a triple (X,W ), (Ω,F ,P), (Ft) where X satisfies the equation on this
space according to that Brownian filtration.

Definition 21 (Tanaka Equation). Canonical example of a stochastic differential equation
which has a weak solution but no strong solution.

X0 = 0 dXt = sgn(Xt)dBt

Definition 22 (Bessel Equation). Note that R(t) =
√∑n

i=1W
2
i (t) for n independent Brow-

nian motions satisfies the following:

R(t) = r +B(t) +
n− 1

2

∫ t

0

ds

R(s)

Note that 1
R(t)

is the classic example of a local martingale that is not a martingale.
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Definition 23 (Ornstein-Uhlenbeck). The following equation:

dXt = −αXtdt+ σdWt

is satisfied by:

Xt = X0e
−αt + σ

∫ t

0

e−α(t−s)dWs

Definition 24 (Brownian Bridge). Note that Wt = Bt − tB1 where Bt is Brownian motion
uniquely satisfies the following:

Xt = Wt −
∫ t

0

Xs

1− s
ds

9 Week 9: Properties of Diffusion Processes

Definition 25 (Ito Diffusion). An Ito diffusion is of the form:

dXt = b(t,Xt)dt+ σ(t,Xt)dBt

or equivalently, in integral form:

Xt = X0 +

∫ t

0

b(t,Xs)ds+

∫ t

0

σ(t,Xs)dBs

where Bt is Brownian motion, b ∈ Rn, and σ ∈ Rn×m.

If b and σ do not depend on t we say the diffusion is time-homogenous.

There a number of interesting aspects of Ito diffusions, including the Markov Property, the
strong Markov Property, the existence of an infinitesimal generator, the Dynkin formula, and
the characteristic operator.

Definition 26 (Markov Property). Let f : Rn → R be a bounded Borel measurable function.

Let {F (m)
t }t≥0 be the filtration generated by the Brownian motion. Then for X an Ito diffusion

we have for any t, h ≥ 0.

(Markov) Ex[f(Xt+h)|F (m)
t ](ω) = EXt(ω)[f(Xh)]

Let τ be a stopping time. For h ≥ 0 we have:

(Strong Markov) Ex[f(Xτ+h)|F (m)
τ ](ω) = EXτ (ω)[f(Xh)]

12
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Definition 27 (Generator of an Ito Diffusion). Let Xt be an Ito diffusion. The infinitesimal
generator A of Xt is:

Af(x) = lim
t↓0

Ex[f(Xt)]− f(x)

t

Let DA(x) denote the set of functions for which the above limit exists.

By applying Ito’s formula and some linear algebra, we have, for a time-homogenous diffusion:

Af(x) =
∑
i∈[n]

bi(x)
∂f

∂xi

+
1

2

∑
i,j∈[n]

(σσT )ij(x)
∂f

∂xi∂xj

Remark 10. For X an n-dimensional Brownian motion, the generator is Laplacian:

AXf =
1

2

n∑
i=1

∂2f

∂x2
i

For X the graph of Brownian motion (dX1 = dt and dX2 = dBt), the generator is the
so-called heat operator:

AXf =
∂f

∂t
+

1

2

∂2f

∂x2
f = f(t, x)

The following is sort of a fundamental theorem of calculus for diffusions.

Definition 28 (Dynkin’s Formula). Let f be a C2 function Rn → R with ocompact support.
let τ be a stopping time Ex(τ) < ∞.

Ex[f(Xτ )] = f(x) + Ex
[ ∫ τ

0

Af(Xs)ds
]

Remark 11 (On Brownian Hitting Times). Using Dynkin’s formula, we can establish some
interesting facts about the behavior of Brownian motion, e.g. it is recurrent in two dimensions
but transient in three.

Consider n-dimensional Brownian motion starting at a ∈ Rn with ∥a∥ < R. What is the
expected time it takes for Brownian motion to exist the R-radius ball about the origin? Let
τk be the stopping time of interest. Applying Dynkin’s formula with f(x) = x2, we have:

R2 = Ea[f(Bτk)] = f(a) + Ea[

∫ τk

0

Af(Bs)ds] = ∥a∥2 + nEa[τk]

=⇒ Ea[τk] =
1

n
(R2 − ∥a∥2)

Now suppose we are in dimension ≥ 2 and we start at b with ∥b∥ > R. What is the probability
that we enter the ball? Let αk be the first time we either enter the inner circle or exit the
circle of radius 2kR.

13
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Fact: ∆f = 0 for

f(x) =

{
− log(∥x∥) n = 2

∥x∥2−n n > 2

Hence, by Dynkin, Eb[f(Bαk
)] = f(b) for all k ≥ 1.

But then, for n = 2 we have:

(− log(R))pk + (− log(R2k))qk = − log ∥b∥

While for n ≥ 3 we have:

∥R∥2−npk + ∥R2k∥2−nqk = −∥b∥2−n

where pk is the probability of hitting the inner circle and qk for outer.

By analyzing limits as k → ∞ we can establish recurrence in 2d and transience in 3d.

Remark 12. (Original Approach, Bessel Equation) Let R(t) =
∑n

i=1W
2
i (t) for Wi indepen-

dent Brownian motions. Recall that for f(x1, ..., xn) =
√∑n

i=1 x
2
i we have:

∂f/∂xi =
xi

f(x)
∂f/(∂xi∂xj) =

δij
f(x)

− xixj

f(x)3

By Ito’s Rule, we have:

dR(t) =
n∑

i=1

Wi(t)

R(t)
dWi(t) +

1

2

( n

R(t)
+

∑
i W

2
i (t)

R(t)3︸ ︷︷ ︸
1/R(t)

)

dRt =
n− 1

2Rt

dt+ dβt

where βt =
∑

i

∫ t

0
Wi(θ)
R(θ)

dWi(θ) is a BM, we can check this by taking quadratic variation.

By Ito’s Lemma and setting n = 2 we have:

log(Rt) = log(R0) +

∫ t

0

dRs

Rs︸ ︷︷ ︸∫ t
0

dt

4R2
s
+

dβt
Rs

−1

4

∫ t

0

ds

R2
s

log(Rt) = log(r) +

∫ t

0

dBs

Rs

We can do similar to establish the following for n = 3:

1

R(t)
=

1

r
+

∫ t

0

dBs

R2
s

14
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Using the following fact about Bessel process hitting times (reminiscent of the hitting time
equation for Brownian motion) with 0 < a < r < b < ∞,

Pr(Ta < Tb) =
f(b)− f(r)

f(b)− f(a)

where f is chosen such that f(Rt) is an Ito integral with respect to BM.

n = 2 Pr(Ta < Tb) =
log(b/r)

log(b/a)
→ 1 as b → ∞

n = 3 Pr(Ta < Tb) =
1/b− 1/r

1/b− 1/a
→ a

r
as b → ∞

Note also that k = mint≥0Rt has uniform distribution on (0, r). For l ∈ (0, r),

P(min
t≥0

Rt < l) = P(∃t s.t. Rt < l) = P(∃t s.t. Rt = l) = l/r

10 Week 10: Stochastic Control

Definition 29 (Goal Problem of Heath-Kulldorff). Consider a process Xt with x ∈ (0, 1) of
the form

Xt = x0 +

∫ t

0

πsdWs + b

∫ t

0

πsds

with the property that P(Xt ∈ [0, 1] ∀t ∈ [0, T ]) = 1. With this we can show that the endpoints
are absorbing (Cameron-Martin). Interested in G(x0) = supπ∈Π(x0) P(X

x0,π(T ) = 1), where

Π(x0) is the set of controls which keep the process in the interval and P(
∫ T

0
π2
t dt < ∞) = 1.

The trick in this problem is to rewrite with W̃t = Wt + bt as

Xs = x0 +

∫ 1

0

πsdW̃s

Then under Q with dQ/dP = exp(−bWt − b2

2
t).

Analyze Ax0 = {dQ/dP ≥ kx0}. If it has Q(Ax0) = x0 then

P(Ax0) = sup
B:Q(Ax0 )≤kx0

P(B) ≥ G(x0)

with equality if we can find π̂ such that P(Xx0,π∗
(T ) = 1) = G∗(x0). Use Brownian properties

to get the following explicit form for G∗.

G∗(x0) = Φ(Φ−1(x0) + b
√
T )

15
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To find π̂, observe the following Q-Levy-martingale.

F (t, B(t);x0) = X̂(t) = Q(Ax0|Ft)

Notice that F solves the backwards heat equation ∂F + 1
2
D2F = 0. More concretely:

X̂(t) = x+

∫ t

0

DF (s, B(s);x0)︸ ︷︷ ︸
π̂s

dBs︸︷︷︸
dWs+bds

By uniqueness, solving for DF gives us the optimal control.

Theorem 28 (Neyman-Pearson Lemma). Fix a probability space and on it two measures
P ≪ Q. Fix x ∈ (0, 1). Let Z = dP

dQ . Suppose there is κ = k(x) > 0 such that Ax = {Z ≥ κx}
satisfies Q(Ax) = x. Then:

sup{P(B) : Q(B) ≤ x} = P(Ax)

11 Week 11: Portfolio Theory

A basic model for an asset’s price fluctuation over time is as follows:

Xt = x0 exp
(∫ t

0

(αs −
σ2
s

2
)︸ ︷︷ ︸

γs

ds+

∫ t

0

σsdWs

)

where γs is the (local) rate of growth, σs is the local dispersion, and αs is the (local) mean
rate of return. The local rate of growth emerges here from Ito’s lemma: this is perhaps more
evident when we write the model in its simpler differential form.

dXt

Xt

= αtdt+ σtdWt

12 Week 12: Representation Theorems

12.1 Stochastic Exponential and Logarithm

Definition 30. Let M be a continuous local martingale.

The stochastic exponential ϵ(M) is given by

ϵ(M)t = exp
(
Mt −

1

2
⟨M⟩t

)
The stochastic logartihm L(M) is given by

L(M)t =

∫ t

0

dZs

Zs

16
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Theorem 29 (Novikov’s Condition). Let W be a d-dimensional Brownian motion and let X
be a d-dimensional process that satisfies:

P
[ ∫ T

0

(X
(i)
t )2 < ∞

]
= 1 ∀i ∈ [d], T ∈ [0,∞)

If the following holds, then ϵ(X) is a martingale.

E
[
exp

(1
2

∫ T

0

∥Xs∥2ds
)]

< ∞ ∀T ∈ [0,∞)

Remark 13. The solution to the stochastic differential equation

Zt = 1 +

∫ t

0

ZsdMs

is the stochastic exponential of M , i.e. Z = exp(M − ⟨M⟩),

Proof. Let X = M − 1
2
⟨M⟩. Let f(x) = ex. Let Z = f(X). Apply Ito’s.

dZt = d(f(Xt)) = f ′(Xt)dXt +
1

2
f ′′(Xt)d⟨X⟩t

= Zt(dMt −
1

2
d⟨M⟩t) +

1

2
Ztd⟨M⟩t = ZtdMt

Remark 14 (Yor’s Formula). ϵ(L)ϵ(M) = ϵ(L+M + ⟨L,M⟩)

Remark 15. ϵ(L(M)) = L(ϵ(M)) = M .

Theorem 30 (Van Schuppen-Wong). Consider a positive continuous martingale Zt with
Z0 = 1. Fix T ∈ [0,∞). Define:

QT (A) = EP[ZT · 1A]

Then, for any process M that is a continuous local martingale under P, the following process
is a continuous local martingale under QT for all t ∈ [0, T ].

M ′
t = Mt − ⟨L,M⟩t = Mt −

∫ 1

0

d⟨M,Z⟩s
Zs

Furthermore, ⟨M⟩t = ⟨M ′⟩t for t ∈ [0, T ].
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Theorem 31 (Girsanov). Take LT =
∫ T

0
θtdWt. Let ZT = ϵ(LT ) = exp(LT − 1

2
⟨L⟩T ) = dQT

dP .
Then if Wt is Brownian motion under P, then the following is Brownian motion under Q.

W ′
t = Wt −

∫ t

0

θsds

For θt constant, and hence Lt = θWt, this reduces to the Cameron-Martin Theorem, i.e.

W ′
t = Wt − θt ZT = exp

(
θWT − θ2

2
T
)

Proof. (Using Van Schuppen-Wong) Start with LT . Take ZT = ϵ(LT ) and MT = WT Brown-
ian motion in the notation of Van Schuppen-Wong. Then the following is a continuous local
martingale under the ZT -changed measure.

W ′
t = Wt −

∫ 1

0

d⟨Zs,Ws⟩s︷ ︸︸ ︷
Zsθsds

Zs

= Wt −
∫ t

0

θsds

Furthermore, ⟨W ′⟩t = ⟨W ⟩t = t so by Levy characterization it is Brownian motion.

12.2 DDS and others

Theorem 32 (Dambis-Dubins-Schwarz or DDS). Let M be a continuous local martingale.
Then there exists a Brownian motion B such that:

M(t) = B(⟨M⟩(t))

Theorem 33 (Knight). Multivariate Extension of DDS. See Karatzas and Shreve p. 179.

Theorem 34 (Doob representation theorem). Consider a continuous local martingale M
starting at the origin, with ⟨M⟩t =

∫ t

0
λsds with λ : [0,∞]× Ω → R progressively measurable

and locally integrable. Then there exists W such that:

Mt =

∫ t

0

√
λsdWs

(This is converse to the idea that if Mt =
∫ t

0
HsdWs then ⟨M⟩t =

∫ t

0
H2

sds).
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