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What is interest?

• A fundamental yet powerful concept: interest is the price of borrowing some-
one else’s money. It reflects how much we think money is worth now (present
value) versus some time in the future (future value).

• Can be understood via accumulation function, a(t). If person A took a loan
of size 1 out from person B, and we let a(t) be the function representing the
outstanding debt, we think of a(t) as growing by default (if left untouched; of
course the debt shrinks with each payment). The effective interest between
two time points is described by:

i[t1,t2] =
a(t2)− a(t1)

a(t1)

In other words (1 + i[t1,t2])a(t1) = a(t2).

Complementary to insurance is the concept of discount. This is measured
relative to the end rather than the beginning,

d[t1,t2] =
a(t2)− a(t1)

a(t2)

In other words (1− d[t1,t2])a(t2) = a(t1).

In general, we can relate discount and interest as

d =
i

i+ 1
i =

d

1− d

• Simple interest is a linear relationship: a(t) = a(0) + it. Likewise with simple

discount: a(t) = a(0)
1−dt

.

Typically we work with compound interest: a(t) = (1 + i)ta(0), where t is
typically some integer representing fixed periods like years or months.

Oftentimes we are given annual nominal interest rate compounded m times
per year. Call this δ. What this means it that every 1/m-year period, we have
an accumulation factor of (1 + δ/m). So the annual effective interest rate is
given by (1 + δ/m)m − 1.

We can think about m → ∞ as approaching a continuous interest regime,
where we accumulate at every moment. It turns out that

lim
m→∞

(1 + δ/m)m = eδ
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If we charge interest in a continuous manner, where eδ−1 is the annual effective
interest, we call δ the annual force of interest.

In the continuous interest regime, it is natural to think about δ changing con-
tinuously as well.

i[0,t] = exp
(∫ t

0

δtdt
)

• A related notion is inflation. This relates to the buying power of money. In
real life, inflation is calculated based on the actual price of goods in the market
(like bread and smartphones), and hence is determined by the buyers and
sellers of those goods. Contrast this with interest, which reflects the interaction
between lenders and borrowers.

Of course, lenders and borrowers take into account the (expected) inflation, as
both parties presumably want to use their money to buy “real things”. If r
is the inflation rate (meaning 1 dollars now has the same purchasing power as
1 + r dollars in one year), then the real or inflation-adjusted interest rate
is given by

i′ :=
a(1)− (1 + r)a(0)

(1 + r)a(0)
=

(1 + i)− (1 + r)

1 + r
=

i− r

1 + r

The only difference with the original definition of interest is that we compare
to the inflation-adjusted version of the old value.

• Later on in these notes we will talk about the term structure of interest rates.
This is the idea that interest rates vary depending on the term of the loan, and
indeed are typically higher for longer-term loans. There are various theories
for why exactly this happens (is this a “rational” behavior? or is it due to
“imperfections” in the market). The intuition is more or less clear: generally
lenders want their money back sooner rather than later.

Pricing

• How do you assign a price to a sequence of payments throughout time (some-
times known as a cashflow)? If {Ct} represents a collection of payments, and
we are pricing them all back to time zero using a fixed interest rate i, we can
use the equation:

P (i) =
∑
t

Ct(1 + i)−t

• Sometimes we abbreviate (1 + i)−1 as vi and call this the value function.
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Generic Series Equations

• For any r,

ar + ar2 + ...+ arn =
a(1− rn)

1− r

• For all r ∈ [−1, 1],

ar + ar2 + ... =
a

1− r

• Arithmetic series
1 + 2 + ...+ n = n(n+ 1)/2

Observation 1. (arithmetico-geometric series)

a(r + 2r2 + ...+ nrn) = ar ·

(
rn−1
r−1

− nrn
)

1− r

Proof. Let A = r + 2r2 + ...+ nrn. Let B = 1 + r + ...+ rn−1.

A+B = 1 + 2r + 3r2 + ...+ nrn−1 + nrn

r(A+B) = A+ nrn+1

A(1− r) = r(B − nrn)

A =
r ·

(
rn−1
r−1

− nrn
)

1− r

• If |r| < 1, then as n → ∞,

r + 2r2 + 3r3 + ... =
r

(1− r)2

Annuities

• An annuity is simply sequence of payments. Could be level payments, could be
geometrically or arithmetically increasing. Could be repayments to a loan, or
deposits into a bank account. In common parlance you hear the word annuity
as it related to retirement plans: people may purchase annuities to create a
stable source of income through time.

We are often interested in pricing annuities at specific points in time. It is
important to be specific about where you are in time relative to the payments.
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• Consider a number line representing fixed periods of time (say month or year
intervals). If the time is circled then there is a payment, say of 1 deposited
into a bank account earning compound interest i with each period.

0 1 2 ... n n+ 1

– “PV of annuity-immediate” =⇒ cash flow is priced at time 0.

The symbol and calculation is given by:

an i := vi + v2i + ...+ vni =
1− vni

i

– “PV of annuity-due” =⇒ cash flow is priced at time 1.

än i := 1 + vi + ...+ vn−1
i = (1 + i)an i

– “FV of annuity-immediate” =⇒ cash flow is priced at time t.

sn i := (i+ 1)n−1 + (1 + i)n−2 + ....+ 1 = (1 + i)nan i

– “FV of annuity-due” =⇒ cash flow is priced at time t+ 1.

sn i := (i+ 1)n + (1 + i)n−1 + ....+ (1 + i) = (1 + i)n+1an i

• The PV of an arithmetically increasing annuity is given by:

(IP,Qa)n i = Pv + (P +Q)v2 + ...+ (P + (n− 1)Q)vn

Observation 2. Arithmetic series annuities simple formulas.

• (IP,Qa)n i = Pan i + (Q/i)
(
an i − nvn

)
.

• (Ia)n i := (I1,1a)n i =
än i−nvn

i

Straightforward Proof. Apply Observation 1.

(IP,Qa)n i = Pv(1 + v + ...+ vn−1) +Qv(v + ...+ (n− 1)vn−1)

= Pv · 1− vn

1− v
+Qv ·

v
(

vn−1−1
v−1

− (n− 1)vn−1
)

1− v
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Note that v
1−v

= 1
1
v
−1

= 1
i
.

(IP,Qa)n i = P · 1− vn

i
+Q ·

vn−1−1
i

− (n− 1)vn

i
= Pan i + (Q/i)(an−1 i − (n− 1)vn)

= Pan i + (Q/i)(an−1 i + vn − vn − (n− 1)vn)

= Pan i + (Q/i)(an i − nvn)

If you let P = Q = 1, then

(I1,1a)n i = an i + an i/i− nvn/i = ((i+ 1)/i)an i − nvn/i =
än i − nvn

i

Roundabout Proof, manipulating actuarial symbols. Recall v = vi = (i + 1)−1 and
(Ia)n i = v + 2v2 + ...+ (n− 1)vn−1 + nvn.

(Ia)n i + än i = 1 + 2v + 3v2 + ...+ nvn−1 + nvn

= (Ia)n iv
−1 + nvn

än i − nvn = (Ia)n i(v
−1 − 1)

Recall that v−1 − 1 = (i + 1) − 1 = i, so we obtain the desired result. As for the
general increasing annuity, we have:

(IP,Qa)n i = P (v + v2 + ...+ vn) +Q(v2 + ...+ (n− 1)vn)

= Pan i +Qv(v + ...+ (n− 1)vn−1 + nvn − nvn)

= Pan i +Qv(v + ...+ (n− 1)vn−1 + nvn − nvn)

= Pan i +Qv((Ia)n i − nvn)

= Pan i +Qv
( än i − nvn

i
− nvn

)
= Pan i +

Qv

i

(
än i − nvn − invn

)
= Pan i +

Qv

i

(
än i − nvn−1

)
= Pan i +

Q

i

(
an i − nvn

)
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(I wrote this latter proof before finding the simpler route; I suppose it was good
practice with actuarial symbols...).

Observation 3. Formula for an arithmetically decreasing annuity.

(Da)n i := vn + 2vn−1 + ...+ (n− 1)v2 + nv =
n− an i

i

.

Proof. Observe that (Da)n i = vn+1
(
(1 + i) + 2(1 + i)2 + ... + n(1 + i)n

)
. Apply

Observation 1:

(Da)n i = vn+1 · (1 + i) ·
(1+i)n−1
(1+i)−1

− n(1 + i)n

1− (1 + i)

= vn ·
n(1 + i)n − (1+i)n−1

i

i
=

n− an i

i

Loan Amortization

• An amortized loan is one where, when you make a payment, you first pay
down the interest accumulated since the last payment, then you pay down the
principal.

• If OBt denotes the outstanding balance on a loan at time t; PRt denotes the
principal paid off at time t; and It represents the interest paid at time t, then
the key formula here is:

It+1 = i ·OBt

(If the payments are not at fixed intervals, then the more general formula is
It′ = ((1 + i)t

′−t − 1) ·OBt for t
′ > t).

• If you have a fixed payment schedule K1, ..., Kn, where the loan is supposed to
be paid back by time n, you can make some further observations:

– The principal paid at time t is what remains of the payment after paying
the interest:

PRt = Kt − It
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– The outstanding balance after payment is the previous outstanding bal-
ance, minus the principal payment:

OBt+1 = OBt − PRt−1

This comes from the fact that OBt+1 = (1 + i)OBt−Kt.

• For general payment schedules, if you want to fill out {It,PRt} for all t, you
need to follow the recursion induced by the previous three equations, with
boundary conditions: OB0 = L (the starting amount of the loan) and OBn = 0
(after n periods the loan is paid off).

• For fixed payment schedules, you have more direct formulas. Of course you can
relate the payment value to the loan amount L through an annuity (assume we
have an annuity-immediate, and n periods).

Kt = L/an i := K

Observation 4 (level payment amortization). Suppose I have a loan L which I take
out now, which I pay off with an amortized level payment over n periods (end of
period payments) with interest rate i. Then there is a simple form for the interest
and principal paid off at each time.

PRt = Kvn−t+1
i It = K(1− vn−t+1

i )

Note that the principal paid off increases exponentially: PRt+1 = (1 + i) PRt.

Proof. Note that OBt = Kan−t i, as there are n− t payments remaining. Then note

It = iOBt−1 = iKan−(t−1) i = iK
1− vn−t+1

i

i
= K(1− vn−t+1

i )

For the principal, recall K = PRt +It.

Bonds

• Bonds are essentially loans issued by an entity (like a government or company)
to raise short-term funds. When you buy a bond, you collect coupon payments
and then a redemption payment when the bond matures. To visualize this:

0 1 2 ... n
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– At time 0, you buy the bond.

– At times that are circled, {1, ..., n}, you receive a coupon payment.

– At the final time, denoting maturity of the bond, we receive a final coupon
payment and the redemption value.

• There are many concepts and numbers associated with bonds: F is the face
value. C is the redemption value (how much the buyer get at maturity). r is
the coupon rate per payment period, so Fr is how much money you actually
get per period. m is the number of periods.

When a bond is par value or redeemable at par, this means F = C.

• There are three “perspectives” on bonds, so to speak, captured by the following
equation:

Fr = Cg = Gj

– (coupon rate) r is the coupon rate.

– (adjusted coupon rate) g is the adjusted coupon rate, g = (F/C)r. If
the bond is at par, g = r. We define this because it is useful.

– (yield rate) j is the yield rate; it captures the growth rate of money put
into the bond (i.e. every dollar invested in the bond appreciated by a
factor 1+ j per period). G, referred to as the base value, is then defined
as the PV of the coupon payments viewed as a perpetuity: Fr/j.

• There are a few ways to price bonds, i.e. evaluate their present value. The
most basic equation is

P = Fran j + Cvnj (1)

Observation 5. Other pricing formulas for bonds:

• (price-discount) P = C(g − j)an j + C

• (base value) P = (C −G)vnj +G.

• (Makeham’s formula) P = (g/j)(C − Cvnj ) + Cvnj .

Proof. For price-discount, replace Fr with Cg.

P = Cgan j + Cvnj = Cgan j +
Cjvnj + Cj − Cj

j
= Cgan j − Cjan j + C
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For base value, replace Fr with Gj.

P = Gjan j + Cvnj = G(1− vnj ) + Cvnj

For Makeham’s, use Fr = Cg and just distribute:

P = Cgan j + Cvnj = C(g/j)(1− vnj ) + Cvnj = (g/j)(C − Cvnj ) + Cvnj

The nice thing about Makeham’s formula is that if you know the present value of
the redemption, you can price the bond without knowing how many terms it lasts.

Callable Bonds

• A bond is callable if the issuer has some choice of dates when they can repay
the debt. This of course puts more power in the issuer’s hands, and makes the
bond less desirable to the purchaser.

• A bond has a different yields based on when it is called in. A rational investor
should assume the worst-case yield. In other words, you should assume the
issuer will call on the date that induces the lowest yield.

Definition 1. The yield rate of a callable bond is the lowest yield rate induced by
the various potential call dates.

Observation 6. If a bond is bought at a discount, then the yield rate of that bond
is the yield induced by the earliest call date. More generally, if t1 < t2 < ... and yi is
the yield induced by calling at ti,

• (discount) j1 > j2 > ... > jn

• (premium) j1 < j2 < ... < jn

Proof. Recall the basic bond pricing formula. Let jk be the yield rate corresponding
to calling at period j. Let Pk(jk) denote the (fair) price of the bond if called at
period k with yield jk. Observe:

Pk(jk) = (Cg)ak jk
+ Cvkjk

= (Cg)(ak−1 jk
+ vkjk) + Cvkjk

= (Cg)ak−1 jk
+ C(1 + g)vnjn

= (Cg)ak−1 jk
+ Cvk−1

jk
· 1 + g

1 + jk

< (Cg)ak−1 jk
+ Cvk−1

jk
= Pk−1(jk)
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where the last line follows from the fact that the bond is issued at discount, meaning
P < C, therefore g < jk due to the price-discount formula for bonds: P − C =
C(g − j)an j. Recall that Pk,jk = Pk−1,jk−1

due to how we define the yield rates.
Therefore

Pk−1(jk−1) < Pk−1(jk)

Both sides represent a present value of positive cashflows, P (j). Higher interest rates
mean lower present value and vice-versa. So necessarily jk−1 > jk. By definition of
yield rate of a callable bond, we pick the lowest call data. The argument for premium
is all reverse, since g > jk.

Bond Amortization Schedules

• We can think about the loan repayment scheme of the bond in terms of an
amortization schedule, meaning we can deconstruct how much of the coupon
and redemption payments are

• We track the development of “outstanding balance” of the debt in terms of a
sequence called the book values, BV0,BV1, ...,BVm. Note that BV0 is the
debt owed immediately after the bond is bought: this is the price paid for the
bond. BVt is the debt owed immediately after the t-th coupon is paid.

Importantly, we have:

– BV0 = P = C(g − j)an j + C

– BVm = C, the redemption value.

– Interpolating between these, we have: BVt = C(g − j)an−t j + C

• The book values form a curve tracing from the original price of the bond to
the redemption value.

• If the bond is premium, P > C, then the curve is decreasing, concave down.
Therefore Bt < Bt−1, so PRt = Bt−1 − Bt > 0 (this is often written as Pt in
the context of bonds, and called adjustment of principal). This is the standard
loan repayment situation: part of the coupon pays for interest, and the rest
pays for interest. Adjustment of principal for premium bonds is also referred
to as amortization of premium.

If the bond is discount, P < C, then the curve is increasing, concave up.
Therefore, Bt > Bt−1, so Pt = Bt−1 −Bt < 0. This means that the coupon Fr
is insufficient to pay back the interest due, so the debt accumulates. In this
case we call Pt the accumulation of discount.

10
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Figure 1: Book value sequence for bond purchased at discount versis premium.

Observation 7. Here is the amortization breakdown of an m-term bond.

Kt = Fr = It + PRt

It = Fr − C(g − j)vm−t+1
j

Pt = C(g − j)vm−t+1
j

Proof. The key idea is that It = jBt−1. Therefore

It = j ·
(
C(g − j)am−(t−1) j + C

)
= C(g − j)(1− vt−m+1) + Cj

= Cg − Cj − C(g − j)(vt−m+1) + Cj

= Fr − C(g − j)(vt−m+1)

where we use Cg = Fr in the last step.

Term Structure of Interest Rates (“Yield Curve”)

• Zero-risk, zero-coupon bonds (in practice, US treasury bonds play this role)
are good measures of interest rates. There is no risk priced in. It is a very pure
measure of the price of lending.

• From these secure bonds, we can extract spot rates. If i[0,t] is the yield rate of
a bond maturing at t,

(1 + st)
t := 1 + i[0,t]

• From these spot rates, we can attempt to estimate i[s,t] in the natural way. We
call this estimate the forward rate f[s,t] (referred to as the (s− t)-year forward
rate deferred s years), and it is defined as follows for s < t.

(1 + f[s,t])
t−s :=

(1 + rt)
t

(1 + rs)s
=

1 + i[0,t]
1 + i[0,s]

11



Noah J. Bergam Exam FM study sheet

• The yield curve essentially plots the spot rate with respect to the term length.
We typically think of the yield curve as increasing and hitting an asymptote,
concave down. Flattening yield curve or inverted yield curve are signs of an
unhealthy economy.

Durations

• In our study and application of interest, we make a lot of simplifying assump-
tions, most notably that interest rates are fixed. In this section we think
carefully about the sensitivity of the present value of a cashflow to the interest
rate. For simplicity, assume a flat yield curve, so we don’t have to worry about
different spot rates. Then the present value is a univariate function:

P (i) =
∑
t≥1

Ctv
t
i =

∑
t≥1

Ct(1 + i)−t

If we are using force of interest δ, then we have P (δ) =
∑

t≥1Cte
−δt.

It is good to keep in mind how this kind of function is shaped. Note that
P (0) =

∑
t Ct, and as i increases, this decays exponentially to zero.

• The Macauley duration can be thought of as a weighted sum of the actual
duration until each cash flow, weighted by the present value of each one.

MacD(i) :=

∑
t≥1 t · Ct(1 + i)−t∑
t≥1Ct(1 + i)−t

This captures sensitivity because cashflows farther out into the future are in-
herenty more unstable to changes in interest (since the interest is compounded
over such a long period).

• The modified duration also measures sensitivity. You can think of it like a
scaled derivative of the present value function with respect to the interest rate.

ModD(i) := −P ′(i)/P (i)

There is an important relationship between Macauley and modified duration.

Observation 8. ModD = (1 + i)MacD(i)

12
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Proof. Take the derivative.

P ′(i) =
∂

∂i

∑
t≥1

Ct(1 + i)−t =
∑
t≥1

−tCt(1 + i)−(t+1) = −(i+ 1) ·MacD(i) · P (i)

Rearranging, we have −P ′(i)/P (i) = (1 + i)MacD(i).

• Modified duration first-order approximation. This is a basic local linear
approximation using the first derivative.

P (i) ≈ P (i0)(1− (i− i0)ModD(i0))

⇐⇒ P (i) ≈ P (i0) + (i− i0) · P ′(i0)

⇐⇒ P ′(i0) ≈
P (i)− P (i0)

i− i0

Personally I think it is best to start with the most intuitive thing to remember
(like the last line) and work your way back to Modified Duration.

• Macauley duration first-order approximation.

P (i) ≈ P (i0)
(1 + i0
1 + i

)MacD(i0)

Observation 9 (Macauley duration of level annuity-immediate). Let P (i) = vi +
v2i + ...+ vni = an i. Then:

MacD(i) =
1vi + 2v2i + ...+ nvni
vi + v2i + ...+ vni

=
(Ia)n i

an i

=
än i − nvn

1− vn

Observation 10 (Macauley duration of bonds). Consider a par value bond with
annual coupons F , coupon rate r, and annual yield i. Then

MacD(i) =
Fr(Ia)n i + nFvn

Fran i + Fvn
=

1 + i

i
− 1 + i+ n(r − i)

r((i+ 1)n − 1) + i

Portfolios

• Consider a portfolio which consists of some set of future cash flows (like debts
to pay off; bond coupons or stock dividends to collect; obligations to buy or
sell assets). We should be very familiar at this point with the idea that present
value of this cash flow depends on the current interest rate and its development
in the (near) future.

13
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• The idea of immunization is to protect the present value of a portfolio against
(small) changes to the interest rate.

• Exact matching is probably the most straightforward approach to immuniza-
tion. This is done by ensuring that, at each time step, the value of the assets
equals the value of the liabilities.

• Redington immunization is a set of conditions to ensure that the present
value of a portfolio at . We say a cashflow is Redington immunized

Condition 1: PA(i0) = PL(i0) (PV of assets = PV of liabilities).

Condition 2: P ′
A(i0) = P ′

L(i0) (equiv., durations the same).

Condition 3: P ′′
A(i0) > P ′′

L(i0) (equiv., convexity of assets exceeds liabilities).

In other words, if f(i) = PA(i0)− PL(i0) then f(i) is a local minimum.

• Full immunization: suppose we want to immunize against arbitrarily large
fluctuations in the interest rate. This is a tall order, but we can come up with
conditions.

– (analytic) f(i0) = 0 and is a global minimum.

– (discrete-geometric) Suppose the cash flows are discrete. Then full immu-
nization at i0 occurs if f(i0) = f ′(i0) = 0 and every liability lies between
two assets (“liability sandwiching”).

By design, full immunization is a stronger condition than Redington

• To see how the discrete-geometric condition works, consider a cash flow with:
asset A at time t, asset B1 at time t− u, and asset B2 at time t+w. Suppose
we do things in terms of force of interest δ for simplicity. So

f(δ) = Ae−δt −B1e
−δ(t−u) −B2e

−δ(t+w) = e−δt(A−B1e
δu −B2e

−δw)

The first and second order conditions tell us:

Ae−δ0t = B1e
−δ0(t−u) +B2e

−δ0(t+w)

tAe−δ0t = (t− u)B1e
−δ0(t−u) + (t+ w)B2e

−δ0(t+w)

One can use these conditions to show f(δ) > 0 for δ ̸= δ0.
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• Note that exact matching does not imply Redington immunization. It ensures
that the present values and the durations are the same but also that the con-
vexities are the same.

• How should we think about the difference between matching and immu-
nization? Here is a nice example adapted from [Vaaler et al., 2021] Chapter
9. Suppose you have a debt to pay off in 2 years. To pay off this debt you have
three options: zero-coupon bonds maturing in 1, 2, and 3 years, respectively.

If you buy purely 2-year bonds to cover this debt (the most straightforward
thing), this is exact matching. You do not have to worry about changes in
the interest rate because you’ve locked in a rate with this bond. The problem
is that exact matching can be expensive in practice; maybe the 1 and 3 year
bonds are much cheaper.

If you buy purely 1-year bonds, you will hope for high interest rates in one year
so you can reinvest for the second year and use this to pay off the debt.

If you buy purely 3-year bonds, you will hope for low interest rates in two
years, so that you can sell the bonds and use these to pay off the debt.

If you buy a mix of 1 and 3 year bonds, perhaps you can be stable to changes
in the interest rate. This is the basic idea of immunization.

Sources

Much of the material and notation is taken from [Vaaler et al., 2021]’s textbook on
mathematical interest theory.
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