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Probably Approximate Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss Lemma asserts that for any point cloud in Rd, there exists a
relatively low-dimensional subspace of Rd which preserves pairwise distances up to a given
tolerance level ϵ ∈ (0, 1). In this writeup, we would like to reframe the result with an
independent confidence parameter δ ∈ (0, 1), which characterizes the likelihood with which
a randomly sampled projection leads to such a subspace. In other words, we will prove a
probably approximately correct formalation of Johnson-Lindenstrauss.

Formulation

Given some S = {x1, ..., xn} ⊂ Rd, we call f : Rd 7→ Rk an ϵ-JL map of S if we have the
following guarantee for all distinct u, v ∈ S:

||f(u)− f(v)||2

||u− v||2
∈ [1− ϵ, 1 + ϵ] (1)

The usual Johnson-Lindenstrauss Lemma then states:

Theorem 1. For any S = {x1, ..., xn} ⊂ Rd and any tolerance level ϵ ∈ (0, 1), an ϵ-JL map

of S, denoted f : Rd 7→ Rk, exists if k ≥ 4 ln(n)
ϵ2/2−ϵ3/3

, i.e. k = O(ln(n)/ϵ2).

Most proofs of the above statement uncover an efficient probabilistic algorithm for finding
the map f . In (Dasgupta and Gupta 2002), this algorithm involves a random projection
whose probability of success is at least 1− 1

n
. In this writeup, we explore a slightly different

approach: we would like the probability of success to depend on an independently chosen
variable δ. This motivates the following result:

Theorem 2. If A is a random k × d matrix whose entries are random normal variables
Aij ∼ N (0, 1) and k ≥ 8 ln(2/δ)

ϵ2
, then for any x ∈ Rd, we have, with probability 1− δ:

||Ax||2

k||x||2
∈ [1− ϵ, 1 + ϵ]

With this property, we can specify a probabilistic algorithm for generating a JL map.

Theorem 3. For any ϵ, δ ∈ (0, 1), and for any S = {x1, ..., xn} ⊂ Rd, take A ∈ Mk×n(R),
Aij ∼ N (0, 1) and k ≥ 8 ln(2(n2)/δ)

ϵ2
. Then, with probability (1 − δ), f(x) = 1√

k
Ax is an ϵ-JL

map of S from Rd 7→ Rk.
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Proofs

For the proof of Theorem 1, we refer to the reader to (Dasgupta and Gupta 2002)

Theorem 2

||Ax||2 is a random variable. We want to show that, for a big enough k, it approximates ||x||2
with precision (1± ϵ). Like most proofs of approximate algorithms, we show that the mean
of the distribution of ||Ax||2 is in the right place, and then we show that it is concentrated
enough.

First we observe that E[||Ax||2] = k||x||2 for any positive integer d. The expectation is over
the randomness in the choice of the matrix A.

||Ax||2 =
k∑

i=1

(Ax)2i =
k∑

i=1

[ d∑
j=1

Aijxj

]2
=

k∑
i=1

[ d∑
j=1

A2
ijx

2
j +

d∑
k=1,k ̸=j

AijxjAikxk

]
Apply the expectation to the whole expression, and apply linearity of expectation (and the
fact that, for independent random variables X and Y , we have E[XY ] = E[X]E[Y ]).

E[||Ax||2] =
k∑

i=1

[ d∑
j=1

E[A2
ij]x

2
j +

d∑
k=1,k ̸=j

E[Aij]xjE[Aik]xk

]
Recall that the expectation of X ∼ N (0, 1) is clearly 0, and E[X2] = Var[X] + E2[X] = 1.

=
k∑

i=1

[ d∑
j=1

x2
j

]
= k

[ d∑
j=1

x2
j

]
= k||x||2

We furthermore observe that ||Ax||2 follows a chi-squared distribution. This follows from the
following observations.

• Gaussian random variables are stable, i.e. given two independent Gaussian random
variables centered at the same point, their sum is Gaussian and the variances add.

• This means (Ax)i =
∑d

j=1Aijxj is Gaussian, because each Aijxj is Gaussian with mean

zero and variance x2
j . So the total variance of (Ax)i is ||x||2 =

∑
j x

2
j .

• Thus, ||Ax||2
||x||2 follows a chi-squared distribution with k degrees of freedom, since each

(Ax)i/||x|| ∼ N (0, 1).

||Ax||2

k||x||2
=

1

k

k∑
i=1

[(Ax)i
||x||

]2
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Lemma: A chi-squared distribution with k-degrees of freedomX ∼ χ2(k) obeys the following
tail bound for ϵ ∈ (0, 1).

P [|X/k − 1| < ϵ] ≤ 2e−kϵ2/8

Thus, if we take k ≥ 8 ln(2/δ)
ϵ2

, we win.

P [|||Ax||2/k||x||2 − 1| > ϵ] ≤ 2 exp(−ϵ2(8 ln(2/δ)/ϵ2)/8)

= 2 exp(− ln(2/δ))

= 2 exp(ln(δ/2)) = δ

Thus, the probability of failure is less than δ, so the probability of success is at least 1 − δ.
This concludes the proof.

Proof of Lemma: We apply the Chernoff-Hoeffding bounding method, to X =
∑

k X
2
i with

Xi ∼ N (0, 1) i.i.d. Let Yi = X2
i − 1.

P (X/k − 1 > ϵ) = P (
k∑

i=1

(X2
i − 1) > kϵ)

= P (
k∑

i=1

(X2
i − 1) > kϵ)

= P (
k∑

i=1

Yi > kϵ)

Let t > 0. Apply Markov’s inequality with the Chernoff twist. Then apply the i.i.d property
of Yi.

≤ E(exp(t
∑k

i=1 Yi))

exp(tkϵ)

=
k∏

i=1

E(exp(tYi))

exp(tkϵ)

The game here is to find a bound on E[exp(t(X2
i − 1))]. At first glance, this looks like a

difficult expectation to get a handle on. Thus, we apply the “Law of the Unconscious Statis-
tician” (a tongue-in-cheek call-out to the fact that this is often treated as the definition of
expectation, when it is in fact a nontrivial theorem) which allows to calculate the expectation
of a random variable Y , transformed by some function g (it is helpful when we know the
distribution of Y but not the distribution of g(Y )). We state the law in general below (fY is
the pdf of Y).

E[g(Y )] =

∫ ∞

−∞
g(z)fY (z)dz
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In this case, let g(z) = exp(t(z2 − 1)) and fY be the standard normal. Using a standard
change-of-variables, we can evaluate the integral and find a nice bound.

E[etYi ] =
1√
2π

∫ ∞

−∞
et(z

2−1)e−z2/2dz =
e−t

√
1− 2t

≤ e2t
2

for 0 ≤ t ≤ 1/4

We will now apply the above information to the main inequality. Take t ≤ ϵ/4 ≤ 1/4, so the
above applies. In the second step below, we apply monotonicity of the exponential with the
understanding that tk2ϵ > 0.

P (X/k − 1 > ϵ) ≤ exp(2t2k − tk2ϵ) ≤ exp(2t2k) ≤ exp(kϵ2/8)

We can apply roughly the same method to the other tail and we find the same bound. The
only difference in the proof would be that Yi = 1−X2

i .

Thus, we have the following tail bound:

P (|X/k − 1| > ϵ) ≤ 2 exp(kϵ2/8)
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Theorem 3

Fix ϵ > 0, δ > 0, and S = {x1, ..., xn} ⊂ Rd as given.

Pick δ̃ < δ

(n2)
, and k ≥ 8 ln(2/δ̃)

ϵ2
.

Let f(x) = Ax/
√
k, where A is as specified in Theorem 2. Since f is linear, then for any pair

of points x and y, we observe the following with probability 1− δ.

||f(x− y)||2

||x− y||2
=

||f(x)− f(y)||2

||x− y||2
∈ [1− ϵ, 1 + ϵ]

For each pair of points, the probability of failure is δ̃. There are
(
n
2

)
points. Let L(u, v) denote

the event in which the Johnson-Lindenstrauss property fails for distinct points u, v ∈ S.
Apply the union bound.

P
( ⋃

u,v∈S,u̸=v

L(u, v)
)
≤

∑
u,v∈S,u̸=v

L(u, v) =

(
n

2

)
δ̃ < δ

Since the probability of failure for f is less than δ, the probability of success (i.e. the
probability that f is an ϵ-JL map for the set of points S) is at least 1 − δ. This completes
the proof.
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