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Probably Approximate Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss Lemma asserts that for any point cloud in R? there exists a
relatively low-dimensional subspace of R? which preserves pairwise distances up to a given
tolerance level € € (0,1). In this writeup, we would like to reframe the result with an
independent confidence parameter 6 € (0, 1), which characterizes the likelihood with which
a randomly sampled projection leads to such a subspace. In other words, we will prove a
probably approximately correct formalation of Johnson-Lindenstrauss.

Formulation

Given some S = {x1,...,z,} C R we call f: R?Y — RF an «-JL map of S if we have the
following guarantee for all distinct u,v € S:

1f(w) = f)I?

[lu = wl[?

ell—e1+¢ (1)

The usual Johnson-Lindenstrauss Lemma then states:

Theorem 1. For any S = {x1,...,x,} C R% and any tolerance level € € (0,1), an e-JL map

of S, denoted f : R R, exists if k > 621;;1_(22/3, i.e. k= 0(In(n)/e?).

Most proofs of the above statement uncover an efficient probabilistic algorithm for finding
the map f. In (Dasgupta and Gupta 2002), this algorithm involves a random projection
whose probability of success is at least 1 — % In this writeup, we explore a slightly different
approach: we would like the probability of success to depend on an independently chosen
variable 0. This motivates the following result:

Theorem 2. If A is a random k X d matriz whose entries are random normal variables
A ~N(0,1) and k > %, then for any x € RY, we have, with probability 1 — §:

| Az|*

Wé[l—ﬁ,l‘l'ﬁ]

With this property, we can specify a probabilistic algorithm for generating a JL map.

Theorem 3. For any ¢,5 € (0,1), and for any S = {xy,...,2,} C RY, take A € My, (R),
Ay ~ N(0,1) and k > w. Then, with probability (1 —9), f(z) = \/LEAI is an e-JL
map of S from R — RF.


https://cseweb.ucsd.edu/~dasgupta/papers/jl.pdf
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Proofs

For the proof of Theorem 1, we refer to the reader to (Dasgupta and Gupta 2002)

Theorem 2

||Az||? is a random variable. We want to show that, for a big enough k, it approximates ||z||?
with precision (1 £ €). Like most proofs of approximate algorithms, we show that the mean
of the distribution of ||Az||? is in the right place, and then we show that it is concentrated
enough.

First we observe that E[||Az||?] = k||z||? for any positive integer d. The expectation is over
the randomness in the choice of the matrix A.

k

422 = 3 (A)? = zk: [ZAM} - zk: [ZA” 22+ Z Al]x]Alkxk]

i=1 =1 j= =1 j= k=1,k+#j

Apply the expectation to the whole expression, and apply linearity of expectation (and the
fact that, for independent random variables X and Y, we have E[XY] = E[X]E[Y]).

BllAd? = 3" [ZE + > EAeEAn
j=1 k=1,k#j

=1

Recall that the expectation of X ~ N(0,1) is clearly 0, and E[X?] = Var[X] + E?[X] = 1.

_ f: [Ed:xg] = k[zd:xﬂ — k||

i=1  j=1 j=1

We furthermore observe that || Az||? follows a chi-squared distribution. This follows from the
following observations.

e Gaussian random variables are stable, i.e. given two independent Gaussian random
variables centered at the same point, their sum is Gaussian and the variances add.

e This means (Az); = Z =1 Aijz; is Gaussian, because each A;;z; is Gaussian with mean

zero and variance x7. So the total variance of (Az); is [|2|[* = >, 23,

e Thus, Hﬁ;ﬂf follows a chi-squared distribution with k& degrees of freedom, since each
(Az)i/l|z[| ~ N(0,1).

2

1 k
kaH? - Ez:: [
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Lemma: A chi-squared distribution with k-degrees of freedom X ~ x?(k) obeys the following
tail bound for € € (0,1).
P[|X/k—1| < ¢] < 2e7 /8

Thus, if we take k > %22/5), we win.
Pl[|Az|[?/k]|z]]* = 1] > €] < 2exp(—€*(81n(2/d)/€*)/8)

= 2exp(—1In(2/9))
=2exp(In(6/2)) =0 O

Thus, the probability of failure is less than 4, so the probability of success is at least 1 — 0.
This concludes the proof. O

Proof of Lemma: We apply the Chernoff-Hoeffding bounding method, to X = Y, X? with
X; ~N(0,1) iid. Let V; = X? — 1.

P(X/k—1>¢) =P (X} —1) > ke)

=P(> ;> ke)

Let t > 0. Apply Markov’s inequality with the Chernoff twist. Then apply the i.i.d property
of Y;.

E(exp(t Yo, Y))

exp(tke)

exp (tY;))
tk:e

Ew

The game here is to find a bound on E[exp(t(X? —1))]. At first glance, this looks like a
difficult expectation to get a handle on. Thus, we apply the “Law of the Unconscious Statis-
tician” (a tongue-in-cheek call-out to the fact that this is often treated as the definition of
expectation, when it is in fact a nontrivial theorem) which allows to calculate the expectation
of a random variable Y, transformed by some function ¢ (it is helpful when we know the
distribution of Y but not the distribution of g(Y")). We state the law in general below (fy is
the pdf of Y). .
Blo(v) = [ a:)fr(2)iz

o0
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In this case, let g(z) = exp(t(2?> — 1)) and fy be the standard normal. Using a standard
change-of-variables, we can evaluate the integral and find a nice bound.

<efor0<t<1/4

1 oo
B = —— [ e e - L

We will now apply the above information to the main inequality. Take ¢t < €/4 < 1/4, so the
above applies. In the second step below, we apply monotonicity of the exponential with the
understanding that tk%e > 0.

P(X/k —1>¢) <exp(2t’k — th’e) < exp(2t°k) < exp(ke?/8)

We can apply roughly the same method to the other tail and we find the same bound. The
only difference in the proof would be that ¥; = 1 — X?2.

Thus, we have the following tail bound:

P(IX/k —1| > ¢€) < 2exp(ke?/8) O
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Theorem 3

Fix € > 0,6 >0, and S = {z1,...,z,} C R? as given.
Pick § < %, and k > %22/3).
2
Let f(x) = Az/vk, where A is as specified in Theorem 2. Since f is linear, then for any pair
of points x and y, we observe the following with probability 1 — 4.

If =)l _ [If (@) = fW)IP
||z = yl[? |z —yl[?

€[l—¢1+¢

For each pair of points, the probability of failure is §. There are (3) points. Let L(u, v) denote
the event in which the Johnson-Lindenstrauss property fails for distinct points u,v € S.
Apply the union bound.

P( U L(u,v)>§ 3 L(u,v):<g)5<5

u,VES uFv u,VES uFv

Since the probability of failure for f is less than §, the probability of success (i.e. the
probability that f is an e-JL. map for the set of points ) is at least 1 — 4. This completes
the proof. O
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