
k-means, gradients, and smart initialization

Noah Bergam njb2154@columbia.edu

Department of Mathematics

Columbia University

New York, NY 10027

Abstract

We discuss the classic k-means clustering problem from the perspective of gradient-based
optimization. This is motivated by the fact that the popular Lloyd’s method for k-means
is equivalent to the Newton-Raphson method, and approximate versions of Lloyd’s method
are equivalent to stochastic gradient descent. In this writeup, we discuss Lloyd’s method in
the broader context of k-means hardness and approximability. We then provide a fleshed-
out proof of the convergence of k-means++, an initialization scheme for Lloyd’s algorithm
which reduces its expected worst-case approximation ratio from unbounded to O(log(k)).

Keywords: unsupervised learning, k-means clustering, gradient methods

1. Introduction

k-means is a classic clustering problem and among the most well-studied topics in un-
supervised learning, by both practitioners and theorists. It is an NP-hard optimization
problem for k ≥ 2 (Dasgupta, 2008) and d ≥ 2 (Vattani, 2009a), and it is even NP-hard
to approximate for variable k and d (Awasthi et al., 2015). Nonetheless, a wide variety
of approximation schemes have been developed. In this writeup, we work towards a proof
of correctness for the O(log k) randomized approximation algorithm known as k-means++
(Arthur and Vassilvitskii, 2007).

The standard formulation of the k-means problem is as follows: given X = (x1, ..., xn) ⊂
Rd, find a set of k cluster centers W = (w1, ..., wk) ⊂ Rd which minimize the sum of squared
distance from each point to its closest center. In other words, we seek to minimize the
following objective:

(w∗
1, ..., w

∗
k) = argmin

W

∑
x∈X

min
w∈W

||x− w||2︸ ︷︷ ︸
ϕW (X)

If ϕW (x) denotes the distance between a set of cluster centers W and a point x, then
the k-means objective can be rewritten as LW (X) =

∑
x∈X ϕW (x)2.

The k-means problem can be seen alternatively as a continuous optimization problem
(finding the best placement of centers in Euclidean space) and a combinatorial one (finding
the best partition of the data, see section 1.1). In this article, we explore both perspec-
tives, but we place particular focus on the continuous perspective, exploring how Lloyd’s
method––the simplest and most well-known algorithm for k-means––is a gradient-based
optimization technique, namely, an instantiation of Newton’s method.

The article proceeds as follows:

©2023 Noah Bergam.

Bergam

• We review basic results on k-means hardness and approximation, including (Dasgupta,
2008)’s proof of k-means hardness and (Wang and Song, 2011)’s dynamic programming
solution to k-means in one dimension.

• We review basic results on gradient descent and Newton optimization, before dis-
cussing the observation by (Bottou and Bengio, 1994) that Lloyd’s method is simply
the Newton-Raphson method in disguise.

• Finally, we prove the O(log k) approximation guarantee of k-means++, which uses a
probabilistic farthest-first scheme to sample the starting cluster centers.

The motivation of this study is the rising interest in understanding gradient-based
techniques in the context of neural network training and other continuous optimization
problems. Results like k-means++ illustrate the importance of initialization and can be
informative for future work in using gradient-based methods to solve even combinatorial
problems.

1.1 Combinatorial Formulation

Observe that any given placement of cluster centers induces a partition of the data points
into “clusters” C1, ..., Ck based on their closest center (in fact, the centers partition the
entire Euclidean space in which they live: this is called a Voronoi partition). Furthermore,
for a fixed partition, the optimal cluster centers are given by wi =

1
|Ci|

∑
x∈Ci

xi, the mean
of the cluster. This observation, in addition to a simple identity about variance, lends itself
to the following interpretation of k-means:

Lemma 1 (Combinatorial Formulation) The k-means problem can alternatively be for-
mulated as finding the partition of points which minimizes the variance within each partition.
In other words:

(C∗
1 , ..., C

∗
k) = arg min

⊔iCi=X

k∑
i=1

1

2|Cj |
∑

x,y∈Cj

||x− y||2 w∗
i =

1

|Ci|
∑
x∈Ci

x

Proof Note that this problem is a strict relaxation, as there are some partitions of the
points which do not admit a representation as cluster centers. But it is not hard to see that
such partitions will never be optimal.

For a fixed clustering, we have the optimal placement of each center is given by the mean,
because the mean is the L2 minimizer. This is evident by a simple analysis of stationary
points: ∂

∂w

∑n
i=1 ||x−w||2 = 0 =⇒ w∗ = 1

n

∑n
i=1 x, and the Hessian is positive-semidefinite

so this is indeed a minimizer.
Hence, the minimizer of the original k-means is equivalent to the minimizer of:

k∑
j=1

∑
x∈Cj

||x− µj ||2

From here, we make use of the following fact from elementary probability: let A,B be
independent and identically distributed random variables taking values in X = (x1, ..., xn)

2

k-means, gradients, and smart initialization

with equal probabilities. Applying definition of expectation and independence, we have:

E((A−B)2) = E(A2) + E(B2)− 2E(A)E(B) = 2E(A2)− 2E(B)2 = 2Var(A)

Unpacking the meaning of the expectations for these discrete uniform random variables
gives us the following identity:

1

|X|2
∑

x,y∈X
∥x− y∥2 = 2

|X|
∑
x∈X
∥x− µX∥2

Substituting this identity into the inner summation completes the proof.

1.2 Lloyd’s Method

This idea that the mean of the induced partition gives us a local solution motivates Lloyd’s
method, also known as the k-means algorithm or (less commonly) Voronoi iterations. The
algorithm is as follows:

Algorithm 1 Lloyd’s algorithm

Require: X = {x1, ..., xn} ⊂ Rd, k ∈ N>1

Initialize arbitrary W = (w1, ..., wk).
while W changes do

Let Ci = {x ∈ X : ∀w ∈W, ||x− wi|| ≤ ||x− w||} (cluster induced by wi).
Update wi =

1
|Ci|

∑
x∈Ci

x.
end while
Return W the set of cluster centers.

Note that there are two degenerate situations that can occur over the course of this
algorithm.

• A center might have no points assigned to it (say, because it starts out much farther
away than the rest of the points). In this case, the algorithm will produce fewer than
k clusters.

• A point may be equally close to two centers, in which case its assignment to a cluster
is made arbitrarily.

When providing lower bounds on the behavior of Lloyd’s method (e.g. with respect to
runtime or error) it is useful to distinguish if the lower bound relies on one of these cases.

1.3 Behavior of Lloyd’s method

The good news about Lloyd’s algorithm is that it monotonically decreases the k-means loss
and it never visits the same clustering twice. It does, however, have undesirable worst-case
behavior in terms of both approximation ratio and runtime.

Lemma 2 Lloyd’s algorithm has unbounded approximation ratio, even for d = 1.

3

Bergam

Proof Take points X = (0, 1, N,N + M) and k = 3. For N > M > 1, the optimal
placement of centers is W ∗ = (1/2, N,N + M) achieving loss 1/2. But if you initialize

(0, 1, N + M
2), you achieve loss M2

2 and Lloyd’s algorithm terminates. Sending M → ∞
with N > M , we have L(W)/L(W ∗) = M2 →∞.

Lemma 3 (worst-case runtime, (Vattani, 2009b)) There exists X = (xi)i∈[n] ⊂ R2

for which Lloyd’s algorithm takes 2Ω(n) steps before terminating, without ever falling into a
degenerate configuration.

It was however noted that k-means has more reasonable smoothed runtime complexity
(Spielman and Teng, 2003), analogous to the simplex method for convex optimization.

Lemma 4 (smoothed runtime, (Arthur et al., 2011)) Fix X = (xi)i∈[n] ⊂ Rd. Let
X ′ = (xi + ϵi)i∈[n] where ϵi ∼ N (0, σ) are independent noise variables. Then the expected
runtime of k-means on X ′ is at most polynomial in n and 1/ϵ.

The lower bounds in Lemmas 3 and 4 require fairly intensive constructions, which we
omit for the sake of brevity.

2. Basic Algorithmic Results on k-means

In this section, we review the simple solution to k-means in one dimension, an elegant
hardness proof for k-means in higher dimensions, and some of the methods that go into
more involved approximation algorithms for k-means.

2.1 k-means dynamic programming solution for d = 1

In one-dimension, it very much pays to look at k-means as a combinatorial problem. The
ordering of the real number line makes the k-means problem amenable to a simple dynamic
programming based solution, as pointed out by ((Wang and Song, 2011)).

The intuition for the algorithm is as follows. Label the given points x1, ..., xn in ascending
order. Let C1, ..., Ck be the optimal clustering of these points: it is necessarily the case that
these clusters are connected, in the sense that i < j implies that for x ∈ Ci, y ∈ Cj we have
x ≤ y. If D[n, k] is the k-means cost of the optimal, and j is the smallest element in Ck,
then:

D[n, k] = D[j − 1, k − 1] + d(xj , ..., xi)

where d(X) =
∑

x∈X ||x − µX ||2. In other words, we have the contribution from the first
k − 1 clusters and the contribution from the last one.

This leads us to the more general recurrence relation: for D[i,m] the optimal k-means
cost for the first i points using k cluster centers, we search for the j that best accomplishes
the split for the last cluster.

D[i,m] = min
m≤j≤i

{D[j − 1,m− 1] + d(xj , , , xi)}

4

k-means, gradients, and smart initialization

The base case is D[i,m] = 0 for m or i zero (since the summations in the k-means loss
would be null). The desired answer of course is D[n, k], which we build up to; it is easy to
get the corresponding clustering by making an auxiliary matrix which records the smallest
entry in cluster m (same formula as D[i,m] but with an argmin rather than a min). The
naive implementation of this algorithm is O(n3k) since the trellis is (n + 1) × (k + 1) and
each entry takes O(n2) times to compute: O(n) rounds of computing d(·), which is naively
O(n). The computation for d(·) could be made constant time however by using another
recursion. This would reduce the overall runtime to O(n2k).

2.2 Hardness

As seen above, k-means is easy to solve in one dimension. It is however NP-hard for k ≥ 2,
as shown by (Dasgupta, 2008)’s reduction from NAE-3SAT∗. It was later shown that it is
also hard for d ≥ 2: (Vattani, 2009a) showed via a reduction from Exact Cover by 3-Sets,
while (Mahajan et al., 2012) showed via a reduction from Planar 3SAT. (Awasthi et al.,
2015) showed it was NP-hard via a reduction from vertex cover on triangle-free graphs.

In this section we briefly review the simple NP-hardness reduction by (Dasgupta, 2008).

Definition 5 A 3CNF Boolean formula ϕ : {0, 1}n 7→ {0, 1} in 3CNF with clauses C1, ..., Cm

is said to be in NAE-3SAT∗ if:

1. There exists an assignment x = (x1, ..., xn) such that for each clause Ci, only one or
two of its literals are satisfied.

2. Each clause has exactly three literals.

3. Given any pair of variables xi, xj, they appear together in a clause at most once in
the forms (xi, xj) or (xi, xj) and at most once in the forms (xi, xj) or (xi, xj)

The nice thing about this language, for our purposes, is that a satisfiable instance
minimizes the number of literals that both (1) appear in the same clause and (2) have the
same sign. We use this to our advantage in the reduction: the optimal clustering will always
“save” on costs if it can place same clause literals in opposite clusters.

Definition 6 The generalized 2-means problem is as follows: given L ∈ R and D = Dij

a metric on n elements , return TRUE if and only if there exists a partition C1 ⊔ C2 = [n]
such that:

2∑
j=1

1

2|Cj |
∑

i,i′∈Cj

Dii′ ≤ L

The reduction proceeds as follows. Let 0 < δ < ∆ < 1 such that 4δm ≤ ∆ ≤ 1−2δn, say
δ = 1

5m+2n and ∆ = 5δm. The lower bound is to penalize placing opposite sign literals in
the same cluster and make the reduction work; the upper bound is to ensure embeddability
of the resulting matrix.

• Given ϕ, construct D on 2n variables, call then x1, ..., xn, x1,, xn such that:

D(α, α) = 0.

5

Bergam

D(α, α) = 1 +∆.

D(α, β) = 1 + δ if α, β or α, β appear in the same clause (denote α ∼ β).

D(α, β) = 1 otherwise.

• Let L = n− 1 + 2δm
n . This will be our loss threshold.

To justify this reduction, we need to show that accept instances map to accept instances
and reject instances map to reject instances.

• (YES to YES) If ϕ is NAE-3SAT∗, then if you partition by positive and negative
literals, the k-means cost is given by:

COST =
1

2n

∑
i,i′∈C1

Dii′ +
1

2n

∑
i,i′∈C2

Dii′

Note that in the assignment, each clause generates 6 same-clause relations: for in-
stance, (x ∨ y ∨ z) generates x ∼ y as well as x ∼ y, and so on. So it suffices to just
look at summation over one cluster, due to the symmetry of things. From there, we
note that there are n2 − n = 2

(
n
2

)
interactions within the cluster, of which 2m are

interactions between same-clause literals. Hence the loss becomes:

COST =
1

n

∑
i,i′∈C1

Dii′ =
2

n

((n
2

)
+mδ

)
= n− 1 +

2δ

m
= L

• (NO to NO) If ϕ is NOT NAE-3SAT∗, we can establish the following in sequence:

(1) Placing a variable and its negation in the same cluster attains loss > L.

Proof Consider a clustering with n and n′ on each side, where a variable and its
negation appear in the same cluster. Then:

COST ≥ 1

n′ (

(
n′

2

)
+∆) +

1

2n− n′

(
2n− n′

2

)
= n− 1 +

∆

n′ ≥ n− 1 +
∆

2n

Since ∆ > 4δm, then the cost is > n− 1 + 2δ
m = L.

(2) Any other clustering corresponds to an assignment of variables. By definition of
NAE-3SAT∗, any assignment of variables will yield more than 2m same-clause same-
sign (and hence same-cluster) interactions, which would yield a cost > L as well.

((Dasgupta, 2008)) furthermore shows that the matrix D = D(ϕ) is Euclidean embed-
dable in dimension at most 2n, by using the fact that an N × N symmetric matrix is
Euclidean embeddable if and only if uTDu ≤ 0 for u ∈ RN such that

∑N
i=1 ui = 0

6

k-means, gradients, and smart initialization

2.3 State of Approximation Algorithms

In light of the hardness of approximation result by (Awasthi et al., 2015), the best we can
hope for is efficient constant-factor approximation or a poly-time approximation scheme for
fixed k or d.

The first example of the latter was (Matoušek, 2000)’s O(n(log n)kϵ−2k2d) algorithm.
The algorithm works by cutting down the search space and then performing a brute force
search. The first reduction is to only consider centroids from an ϵ-approximate centroid set
which would contain a (1+ϵ)-optimal solution. He then shows that every such near-optimal
solution is a well-spread k-tuple, of which there are at most O(nϵ−k2d) for an n-point set.
The algorithm proceeds by producing all of these k-tuples and choosing the one with the
lowest cost.

The first constant-factor approximation was given by (Kanungo et al., 2002)’s local
swap method. This algorithm proceeds also by using Matousek’s ϵ-approximate centroid
set construction, which can be done in O(n log n+ nϵ−d log(1/ϵ)), suffering from the curse
of dimensionality but independent of k. (Kanungo et al., 2002) proposes a single-swap
heuristic, which works by selecting a random set of centers and improves the solution by
removing one center at a time and replacing. This achieves (25+ϵ) approximation; a slightly
more involved multiple-swap heuristic achieves a (9 + ϵ) approximation.

3. Gradients and k-means

In this section we take a slight detour and review basic guarantees for gradient descent and
Newton’s method in the context of convex optimization.

3.1 Gradient Descent

The classical guarantee for gradient-based optimization is an O(1/ϵ2) approximation scheme
for convex, Lipschitz functions (this was shown to be tight by Nesterov). We provide a brief
sketch of this result, following (Bansal and Gupta, 2019)’s potential-based approach.

Definition 7 Given f : Rn 7→ R a differentiable function, a starting point x0 ∈ Rn, a step
size η > 0, and an integer T , we define gradient descent as follows:

• For i = 1, ..., T :

Let xi = xi−1 − η(∇f)

• Return x̂ = 1
T

∑T
i=1 xi

This vanilla version of gradient descent outputs the time-average of its estimates rather
than xT itself. This makes it substantially easier to analyze, as we will see with the proof of
Theorem 1. Note that there are similar results for non-time-averaged methods, see (Nesterov
et al., 2018).

Theorem 8 Let f : Rn 7→ R be a convex, differentiable, and G-Lipschitz. Let x∗ be a

minimizer of f . For all ϵ > 0, gradient descent run for T = G2∥x0−x∗∥
ϵ2

steps with step size

η = ∥x0−x∗∥
G
√
T

returns x̂ such that:

f(x̂) ≤ f(x∗) + ϵ

7

Bergam

Proof It suffices to show the following inequality. With this, the result follows easily from
convexity of f and the choices of η and T .

T∑
i=1

f(xt) ≤ Tf(x∗) +
1

2
ηG2 +

1

2ηT
||x0 − x∗||2

Let Φt =
||xt−x∗||2

2η . The idea is to look at successive steps of the potential function.

Φt+1 − Φt =
1

2η
(||xt+1 − x∗||2 − ||xt − x∗||2)

=
1

2η
(2⟨xt+1 − xt, xt − x∗⟩+ ||xt+1 − xt||2)

(algorithm) =
1

2η
(2⟨−η∇f(xt), xt − x∗⟩+ ||η∇f(xt)||2)

(G-Lipschitz) ≤ 1

2η
(2⟨η∇f(xt), x∗ − xt⟩+G2)

Now consider adding f(xt) to both sides.

f(xt) + (Φt+1 − Φt) ≤ f(xt) + ⟨∇f(xt), x∗ − xt⟩+
G2

2η

(convex) ≤ f(x∗) +
G2

2η

Sum both sides over t ∈ [T], with fortuitous telescoping on the LHS.

T∑
t=1

f(xt) + ΦT − Φ1 ≤ Tf(x∗) +
G2T

2η

Since ΦT > 0 we can drop it from LHS. Rearranging yields our desired inequality.

The Φ used in the proof is referred to by (Bansal and Gupta, 2019) as a potential
function. This is a relatively common construction for some algorithmic analysis, but it
(Bansal and Gupta, 2019) seemed to be the first to suggest its use in analyzing gradient
descent.

3.2 Newton’s Method

In contrast to gradient descent, which is a first-order optimization method, Newton’s method
is a second-order optimization method. What this means is that the optimization considers
the best-fitting paraboloid at a point and then finds the projection which minimizes said
paraboloid.

The elementary setting for learning about Newton’s method is in the context of finding
roots of a continuously differentiable function. Say we have a function f : R → R and we
want to find x∗ such that f(x∗) = 0. The idea is to take the second order Taylor expansion
and set it to zero.

f(x+ t)︸ ︷︷ ︸
f(x∗)=0

= f(x) + tf ′(x) +O(t2)

8

k-means, gradients, and smart initialization

Setting the LHS to zero and ignoring the higher-order terms, we have t = f(x)/f ′(x). This
motivates the following update scheme:

xn+1 = xn −
f(xn)

f ′(xn)

In the absence of higher-order terms––i.e. the case where we are minimizing a quadratic
function––Newton’s method converges in a single step. In general, for the single-variable
case, we have fast convergence for strongly convex functions (i.e. functions which are
bounded below by some parabola).

Minimization of some f : Rd → R boils down to finding the roots of ∇f : Rd → Rd.
We can apply one-dimensional Taylor expansion to each (∇f)i : Rd → R and after putting
things together, arrive at the following system of equations:

∇f(x) + [∇2f(x)]t = ∇f(x+ t)︸ ︷︷ ︸
set to zero

where we interpret this as a vector equation and∇2f(x) is the Hessian matrix, i.e. [∇2f(x)]ij =
∂2f

∂xi∂xj
. Solving for t and then using that as our local update, we have:

xn+1 = xn − [∇2f(xn)]
−1∇f(xn)

Although there are results for fast convergence of Newton’s method on well-behaved
single-variable functions, there are examples of it diverging on vector-valued functions that
are strongly convex (Boyd and Vandenberghe, 2004). In order to guarantee convergence in
the multivariate function minimization setting, one must use a learning rate in the update,
i.e. xn+1 = xn − η[∇2f(xn)]

−1∇f(xn), where a small enough value of η (for stability
purposes) is found using a line search. See (Boyd and Vandenberghe, 2004).

3.3 Lloyd-Newton Correspondence

Consider the following formulation of the k-means loss, equivalent for the purposes of opti-
mizing the cluster centers (the 1/2 factor makes the analysis nicer).

L(w1, ..., wk) =

n∑
i=1

1

2
min
j∈[k]
||xi − wj ||2

Unfortunately but importantly, due to the minimum, this function is not differentiable
everywhere. It is however differentiable outside of a set of measure zero. If you differentiate
with respect to such wi, the derivative is indeed well-defined and given by:

∂L

∂wj
=

n∑
i=1

(wj − xi) · 1{xi ∈ Cj} = |Cj |wj −
∑

i: xi∈Cj

xi

Note that mixed second derivatives are zero. However, taking the second derivative with
respect to wj yields:

∂2L

∂w2
j

= −|Cj |I

9

Bergam

Let Ni = |Ci|. Then the Hessian is given by:

∇2f = diag(N1IN1 , ..., NkINk
) (1)

Note that the Hessian written above is positive semi-definite, but this does not guarantee
the convexity of the objective function because the Hessian above does not exist everywhere.

Nonetheless, the Hessian above exists almost everywhere (with respect to Lebesgue
measure on the domain of possible placements of cluster centers), which makes it reasonable
to conceive of a Newton update scheme.

wk+1 = wk −
[
∇2f(wk)

]−1[
∇f(wk)

]
(2)

= wj −
1

|Cj |

(
|Cj |wj −

∑
i: xi∈Cj

xi

)
(3)

=
1

|Cj |
∑

i: xi∈Cj

xi (4)

This update scheme is precisely Lloyd’s method.

3.4 Online Lloyd’s Algorithm and SGD

With large datasets, it is often desirable to make iterative updates based on small subsets of
the data rather than the entire dataset at once. This is the idea behind mini-batch stochastic
gradient descent, for instance, which approximates the gradient using a randomly chosen
mini-batch of data. It is also the idea behind (Bottou and Bengio, 1994)’s online Lloyd’s
algorithm and (Sculley, 2010)’s mini-batch Lloyd’s algorithm. (Tang and Monteleoni, 2017)
showedO(1/t) convergence for these forms of so-called stochastic k-means (i.e. after t rounds
of the algorithm, additive error with a local minimum is O(1/t)). The proof effectively
interprets these methods as stochastic gradient descent on non-convex functions.

Similarly, (So et al., 2022) provides a convergence guarantee for the online Lloyd’s algo-
rithm in a streaming setting, by interpreting it as stochastic gradient descent and adapting
standard techniques for SGD analysis (e.g. supermartingale convergence).

Algorithm 2 Online Lloyd’s algorithm

Require: p supported in Rd. k ∈ N>1.
Require: hi learning rate.

Initialize W = (W1, ...,Wk) arbitrarily in supp(p).
for n = 1, 2, ... do

Sample X ∼ p.
Identify closest center i← argminj∈[k] ∥Wj −X∥
Update center Wi ←Wi −Hi · (Wi −X).

end for
Return W the set of cluster centers.

In the version of the algorithm analyzed by (So et al., 2022) and (Tang and Monteleoni,
2017), Hi is a random sequence which is made to satisfy certain convergence criteria. In the

10

k-means, gradients, and smart initialization

original algorithm proposed by (Bottou and Bengio, 1994), it was actually deterministic,
i.e. Hi =

1
Ni

where Ni is the number of times that Wi was updates.

The streaming setting of the problem proceeds as follows: fix some distribution p sup-
ported on Rd, and a sequence of points {Xi}i∈N sampled i.i.d. from p. The cost function in
this smoothed setting is then:

f(W1, ...,Wk) =

∫
min
j∈[k]
∥Wj − x∥2p(x)dx

The main theorem (Theorem 5.1) from (So et al., 2022) states that, so long as f has no
degenerate stationary points (i.e. two centers overlapping), then online Lloyd’s with a
suitable choice of stochastic learning rate Hi will asymptotically converge almost surely to
a local minimum, i.e.

lim sup
n→∞

inf
w∈{∇f=0}

∥W (n) − w∥ = 0

where W (n) are the k centers output by stochastic k-means after n iterations.

4. Smart Initialization and kmeans++

With the understanding that Lloyd’s algorithm has arbitrarily bad worst-case behavior, it
is natural to consider how it might perform in expectation, where the randomness is over
the initialization. A natural way to do this initialization is using a farthest-first heuristic:

Algorithm 3 kmeans++

Require: X = {x1, ..., xn} ⊂ Rd, k ∈ N>1

Pick w1 uniformly at random from x1, ..., xn. Initialize W = {w1}.
for i ∈ {2, ..., n} do

Pick x ∈ X with probability:

px =
minw∈W ||x− w||2∑
z∈X minw∈W ||x− w||2

=
D2(x;W)∑
z∈X D2(z;W)

Update W = W ∪ {x} and X = X \ {x}.
end for
Return W the set of cluster centers.

To analyze this algorithm we establish some notation.

• Given a set of cluster centers C and A ⊂ X, let

ϕC(A) =
∑
a∈A

min
c∈C
||x− c||2

• Let COPT denote the set of optimal cluster centers and ϕOPT = ϕCOPT
.

Let {A∗
1, ..., A

∗
k} denote the partition generated by COPT .

11

Bergam

Lemma 9 For S a point set in Rd and z ∈ Rd, we have:∑
x∈S
||x− z|| =

∑
x∈S
∥x− µS∥2 + |S| · ∥z − µS∥2

Lemma 10 Let A∗
i be an arbitrary cluster generated by COPT . Let c be chosen uniformly

at random from C∗
i . Then:

Ec[ϕ{c}(A
∗
i)] = 2ϕOPT (A

∗
i)

Proof Note that the expectation is taken over the choice of u in A∗
i . Each one of these

centers is chosen with equal probability 1/|C∗
i |.∑

c∈A∗
i

P(we pick c) · ϕ{c}(A
∗
i) =

∑
c∈A∗

i

1

|A∗
i |
· ϕ{c}(A

∗
i)

(definition of ϕ) =
∑
c∈A∗

i

1

|A∗
i |

∑
v∈A∗

i

||c− v||2

=
1

|A∗
i |

∑
c,v∈A∗

i

||c− v||2

(variance identity) = 2
∑
v∈A∗

i

||v − µ∗
Ai
||2

= 2 · ϕOPT (A
∗
i)

In the last step, we use the fact that the optimal clustering of a given point set is given
precisely by the mean (again, by the L2 minimizer argument).

Lemma 11 Let A∗
i be an arbitrary cluster from COPT . Let C be an arbitrary clustering.

If we pick c ∈ A∗
i with probability according to farthest-first weighting, then:

Ec[ϕC∪{c}(A
∗
i)] ≤ 8ϕOPT (A

∗
i)

Proof The proof proceeds first by writing out the definition of expectation and inserting
our farthest-first probabilities.

Ec[ϕC∪{c}(A
∗
i)] =

∑
c∈A∗

i

P(we pick c) · ϕC∪{c}(A
∗
i)

=
∑
c∈A∗

i

D(c;C)2∑
a∈A∗

i
D(a;C)2

·
∑
a∈A∗

i

D(a;C ∪ {c})2

Observe that D(a;C ∪ {c})2 = minb∈C∪{c} ∥b − a∥2 = min(D(a;C), ∥a − c∥2)2, by simply
properties of the minimum. So we have the following.

Ec[ϕC∪{c}(A
∗
i)] =

∑
c∈A∗

i

D2(c;C)∑
a∈A∗

i
D2(a;C)

·
∑
a∈A∗

i

min(D(a;C), ∥a− c∥2)2

12

k-means, gradients, and smart initialization

Let us analyze the boxed term in more detail, We would like to decompose it effectively
into a term containing D(a;C)2 and a term containing ||a− c||2. For the sake of simplicity
we suppress the clustering in D(·).

By triangle inequality, we have:

min
b∈C
||c− b|| ≤ min

b∈C
||a− b||+ ∥a− c∥

=⇒ D(c) ≤ D(a) + ∥a− c∥

By applying power-mean inequality 1
2(a+ b)2 ≤ a2 + b2 to the RHS, we have:

D2(c) ≤ 2D2(a) + 2||a− c||2

Summing over A, we have then:

|A| ·D2(c) ≤ 2
∑
a∈A

D2(a) + 2
∑
a∈A
||a− c||2

Plugging this back into our inequality readily gives us our approximation.

Ec[ϕC∪{c}(A
∗
i)] ≤

2

|A|
∑
c∈A

∑
a∈AD2(a)∑
a∈AD2(a)

∑
a∈A

min(D(a), ||a− c||2) (5)

+
2

|A|
∑
c∈A

∑
a∈A ||a− c||2∑
a∈AD(a)2

∑
a∈A

min(D(a), ||a− c||2) (6)

≤ 4

|A|
∑
c,a∈A

∥a− c∥2 (7)

= 8ϕOPT (A) (8)

Hence, with farthest-first weighting, our performance on the new cluster is at most 8 times
the performance of optimal.

The bulk of the work comes into the following lemma. The visual to have in mind is that
there is some fixed Voronoi partition (of the points as well as the ambient space) generated
by the optimal set of cluster centers. If we have some clustering that covers some portion of
this partition, and we add points to that clusterng according to farthest-first weighting, we
essentially want to show that the new points are for the most part going to hit uncovered
clusters.

Lemma 12 Let C be an arbitrary clustering. Fix u > 0 arbitrary clusters from COPT . Let
Xu denote the set of points in these clusters. Let Xc = X \ Xu. Suppose we add t ≤ u
centers to C according to farthest-first weighting. Let C ′ denote the resulting clustering.
Then:

E(ϕC′(X)) ≤
(
ϕC(Xc) + 8ϕOPT (Xu)

)
(1 +Ht) +

u− t

u
ϕC(Xu)

13

Bergam

Proof We prove this by induction on t and u.
(Base Case 1): For u > t = 0, we did not add anything to our clustering, so C ′ = C,

and note that 1 +Ht =
u−t
u = 1. So the desired inequality becomes:

ϕC(X) ≤ ϕC(Xc) + ϕC(Xu) + 8ϕOPT (Xu)

which is trivial since ϕC(Xc) + ϕC(Xu) = ϕC(X).
(Base Case 2): Now suppose t = u = 1. So Xu is a single cluster, and Xc represents

the points contained in the rest of the clusters. Note that the probability we pick a point
from the cluster according to probabilistic farthest first weighting is as follows (no minimum
to deal with because our clustering is a single cluster):∑

t∈Xu

D(t;C)2∑
x∈X D(x;C)2

=

∑
t∈Xu

∥x− t∥2∑
x∈X ∥x− u∥2

=
ϕC(Xu)

ϕC(A)

Likewise with Xu. So by law of total expectation, we have:

E(ϕC′(X)) = P(c ∈ Xu) · Ec(ϕC∪{c}(X) | c ∈ Xu) + P(c ∈ Xc) · Ec(ϕC∪{c}(X) | c ∈ Xc)

Note that the latter expectation can only be lower than ϕC(X), since adding more clusters
always reduces k-means loss. For the expectation on the left, we apply Lemma 7:

E(ϕC′(X)) ≤ ϕC(Xu)

ϕC(X)

(
ϕC(Xc) + 8ϕOPT (Xu)

)
+

ϕC(Xc)

ϕC(X)
· ϕC(X)

≤ 2ϕC(Xc) + 8ϕOPT (Xu)

(Inductive Step): Let a1, ..., at be random cluster centers chosen by the algorithm.
We condition on whether a0 came from Xu or from Xc.

• If the first center was chosen from Xc, then the contribution is at most

≤ P(a1 ∈ Xu) · E(ϕC∪{a2,...,at}(Xu) | a ∈ Xu)

≤ P(a1 ∈ Xu) · E(ϕC∪{a2,...,at}(Xu))

(IH (u, t− 1)) ≤ ϕC(Xu)

ϕC(X)

(
(ϕC(Xc) + 8ϕOPT (Xu))(1 +Ht−1) +

u− (t− 1)

u
· ϕC(Xu)

)
• If the first center was chosen from Xu, we find it advantageous to split this into cases
based on the u clusters contained in Xu.

Suppose we chose our first center from some uncovered cluster A ⊂ Xu. Let pa be the
probability we choose a ∈ A as a center given the center is somewhere in A. Then we
can upper bound the contribution by:

≤ ϕC(A)

ϕC(X)

∑
a∈A

pa · E(ϕC∪{a2,...,at}(Xu \A))

(IH (u− 1, t− 1)) ≤ ϕC(A)

ϕC(X)

∑
a∈A

pa

(
ϕC(Xc ∪ {a}) + 8ϕOPT (Xi \A)(1 +Ht−1)

+
u− t

u− 1
(ϕC(Xu \A))

)
14

k-means, gradients, and smart initialization

Note that ϕ(X \A) = ϕ(X)− ϕ(A). Also note that
∑

a∈A paϕ{a} ≤ 8ϕOPT (A)

≤ ϕC(A)

ϕC(X)

(
(ϕC(Xc) + 8ϕOPT (Xu))(1 +Ht−1)

)
(9)

+
ϕC(A)

ϕC(X)

(u− t

u− 1
(ϕ(Xu)− ϕ(A))

)
(10)

Next we sum this over A ⊂ Xu to obtain the full contribution. Note that for the first
term, all that happens is the coefficient becomes ϕC(Xu)/ϕC(X). The second term
demands a more careful treatment. Observe that, by power-mean inequality:

1

u
ϕC(Xu)

2 =
1

u

(∑
A⊂Xu

ϕ(A)
)2
≤

∑
A⊂Xu

ϕ(A)2

Hence, we can apply the following bound:∑
A⊂Xu

ϕC(A)
(
ϕC(Xi)− ϕC(A)

)
≤ ϕC(Xi)

2 −
∑

A⊂Xu

ϕC(A)2

≤ ϕC(Xi)
2 − 1

u
ϕC(Xi)

2

Putting this together, we have the following bound on the second case:

≤ ϕC(Xu)

ϕC(X)

(
(ϕC(Xc) + 8ϕOPT (Xu))(1 +Ht−1)

)
+

1

ϕC(X)
· u− t

u− 1
· u− 1

u
· ϕ(Xu)

2

=
ϕC(Xu)

ϕC(X)

(
(ϕC(Xc) + 8ϕOPT (Xu))(1 +Ht−1) +

u− t

u
ϕ(Xu)

)

Combining the bounds (boxed), and observing ϕC(Xc)+ϕC(Xu)
ϕC(X) = 1, we have:

E(ϕC∪{a1,...at}) ≤ (ϕC(Xc) + 8ϕOPT (Xu))(1 +Ht−1) +
ϕC(Xc) · ϕC(Xu)

ϕC(X) · u
+

u− t

u
ϕ(Xu)

≤ (ϕC(Xc) + 8ϕOPT (Xu))
(
1 +Ht−1 +

1

u

)
+

u− t

u
ϕ(Xu)

≤ (ϕC(Xc) + 8ϕOPT (Xu))
(
1 +Ht

)
+

u− t

u
ϕ(Xu)

Note in the last line we use 1/u ≤ 1/t, and in the line before that, we use relatively crude
bounds.

ϕC(Xc) · ϕC(Xu)

ϕC(X) · u
≤ ϕC(Xc)

u
≤ (ϕC(Xc) + 8ϕOPT (Xu)) ·

1

u

This completes the induction proof.

15

Bergam

Theorem 13 Let K be a set of cluster centers generated by k-means++ on a dataset X ⊂
Rd. Then we have:

E[ϕK(X)] ≤ 8(log(k) + 2)ϕOPT (X)

Proof Let K = (c1, ..., ck) be the set of k cluster centers generated by the algorithm. Recall
that the first cluster center c1 is chosen uniformly at random and say lands on cluster C1

in the optimal clustering.
E[ϕ{c}(C1)] = 2ϕOPT (C1)

Now we apply Lemma 8 with C = C1, t = u = k − 1, we have:

E(ϕK(X)) ≤
(
ϕK(C1) + 8ϕOPT (X \ C1)

)
(1 +Hk−1)

≤
(
ϕK(C1)− 8ϕOPT (C1) + 8ϕOPT (X)

)
(2 + ln(k))

≤ 8(2 + ln(k))ϕOPT (X)

Note in the last step we use that ϕK(C1) ≤ 8ϕOPT (C1) as per lemma 7.

5. Discussion

The convergence guarantees for local iterative update methods has gained significant inter-
est in the theory community with the rise of deep neural networks and optimization via
stochastic gradient descent (Arora et al., 2018; Andoni et al., 2014; Jacot et al., 2018).
The k-means++ is a triumphant example of analyzing how random initialization (with the
right kind of weighting) enables us to establish a guarantee for an otherwise poorly behaved
gradient-based algorithm, namely Lloyd’s method.

Acknowledgments

The author would like to thank Mihalis Yannakakis and Rashida Hakim for their feed-
back on this review, which was submitted as a final project for COMS6232 Approximation
Algorithms at Columbia.

References

Alexandr Andoni, Rina Panigrahy, Gregory Valiant, and Li Zhang. Learning polynomials
with neural networks. In International conference on machine learning, pages 1908–1916.
PMLR, 2014.

Sanjeev Arora, Wei Hu, and Pravesh K Kothari. An analysis of the t-sne algorithm for data
visualization. In Conference on learning theory, pages 1455–1462. PMLR, 2018.

David Arthur and Sergei Vassilvitskii. K-means++ the advantages of careful seeding.
In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 1027–1035, 2007.

16

k-means, gradients, and smart initialization

David Arthur, Bodo Manthey, and Heiko Röglin. Smoothed analysis of the k-means method.
Journal of the ACM (JACM), 58(5):1–31, 2011.

Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The
hardness of approximation of euclidean k-means. arXiv preprint arXiv:1502.03316, 2015.

Nikhil Bansal and Anupam Gupta. Potential-function proofs for gradient methods. Theory
of Computing, 15(1):1–32, 2019.

Leon Bottou and Yoshua Bengio. Convergence properties of the k-means algorithms. Ad-
vances in neural information processing systems, 7, 1994.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

Sanjoy Dasgupta. The hardness of k-means clustering. 2008.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. Advances in neural information processing systems,
31, 2018.

Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silver-
man, and Angela Y Wu. A local search approximation algorithm for k-means clustering.
In Proceedings of the eighteenth annual symposium on Computational geometry, pages
10–18, 2002.

Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means
problem is np-hard. Theoretical Computer Science, 442:13–21, 2012.

Jǐŕı Matoušek. On approximate geometric k-clustering. Discrete & Computational Geome-
try, 24(1):61–84, 2000.

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

David Sculley. Web-scale k-means clustering. In Proceedings of the 19th international
conference on World wide web, pages 1177–1178, 2010.

Geelon So, Gaurav Mahajan, and Sanjoy Dasgupta. Convergence of online k-means. In In-
ternational Conference on Artificial Intelligence and Statistics, pages 8534–8569. PMLR,
2022.

Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of termination of linear pro-
gramming algorithms. Mathematical Programming, 97:375–404, 2003.

Cheng Tang and Claire Monteleoni. Convergence rate of stochastic k-means. In Artificial
Intelligence and Statistics, pages 1495–1503. PMLR, 2017.

Andrea Vattani. The hardness of k-means clustering in the plane. Manuscript, accessible
at http://cseweb. ucsd. edu/avattani/papers/kmeans hardness. pdf, 617, 2009a.

17

Bergam

Andrea Vattani. K-means requires exponentially many iterations even in the plane. In
Proceedings of the twenty-fifth annual symposium on Computational geometry, pages 324–
332, 2009b.

Haizhou Wang and Mingzhou Song. Ckmeans. 1d. dp: optimal k-means clustering in one
dimension by dynamic programming. The R journal, 3(2):29, 2011.

18

	Introduction
	Combinatorial Formulation
	Lloyd's Method
	Behavior of Lloyd's method

	Basic Algorithmic Results on k-means
	k-means dynamic programming solution for d=1
	Hardness
	State of Approximation Algorithms

	Gradients and k-means
	Gradient Descent
	Newton's Method
	Lloyd-Newton Correspondence
	Online Lloyd's Algorithm and SGD

	Smart Initialization and kmeans++
	Discussion

