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1 Abstract
In this talk, we will introduce the subject of q-analogs, which generalize combina-
torical objects into functions of a formal variable q (and recover the original con-
cept when we send q → 1). We prove that the q-analog for n! provides us with the
generating function for inversions, and we explore basic results on the q-binomial
coefficient. With time permitting, we discuss where q-analogs come up in the study
of symmetric functions.

2 Introduction
The story of q-analogs begins, with some sense, in the following elementary calcu-
lus exercise.

lim
q→1

qn − 1

q − 1

If you apply L’Hopital’s rule, this comes out to n, and you can simply move on
with your life. But you could also take an imaginative leap, and ask: what if we
took away the limit? What we track an association between n and this (somewhat
elegant) expression qn−1

q−1
. Let us see where this takes us.

Definition (q-numbers)

[n]q =
1− qn

1− q
= 1 + q + q2 + ...+ qn−1

We use the following notation to describe a factorial on this number:

[n]q! = [n]q[n− 1]q · · · [2]q[1]q

Recall that n! counts the total number of permutations of length n. [n]q! does as
well (we just take q → 1, as per the motivating identity). However, in its pure form,
[n]q! is a polynomial. So setting q → 1 effectively leads us to add the coefficients.
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We are losing data in this process: namely, we are losing track of the coefficients
and the exponents. We will find out that such data is actually quite interesting. But
first, a definition.

Definition: The inversion number of a permutation π = π1π2...πn is, morally
speaking, the number of elements that are out of order. More formally, we write:

invπ = #{(i, j) : i < j, π(i) > π(j)} = #Invπ

Note that the inversion set #Invπ counts the indices which are out of order, not the
elements.

• (π1 = 3, π2 = 1, π3 = 2)) has inversion set containing (1, 2), (1, 3). The
inversion number is thus 2.

• There are 6 elements in S3. Only 1, (1, 2), (2, 3), and (1, 2, 3) have inversion
number 0.

Some wishful thinking and some careful algebra with examples might lead us
to the following statement, which is in fact an important result in this classical
treatment of q-analogs.

Theorem: For n ≥ 0, we have the following identity:∑
π∈Sn

qinvπ = [n]q!

Proof: We prove by induction on n. The base case n = 1 gives us a trivial equality.
For the inductive step, suppose the statement is true for n− 1.

Observe that any permutation π ∈ Sn written as a list of numbers can be
uniquely obtained by σ ∈ Sn−1 by inserting n into one of the n spaces between
elements of σ (and including the edges).

Let σi be the result of placing n in the i-th spot (counting from the right). Then
clearly we should have inv(σi) = i+ inv(σ). This is because the term we placed at
the i-th position is the largest, so the i terms after it will contribute to the inversion
number. For instance, in the aforementioned example of 312, if we place 4 in the
i = 1 position, we get 3142 and the inversion number increases by i = 1.

∑
π∈Sn

qinvπ =
∑

π∈Sn−1

n−1∑
i=0

qinvσi

=
∑

π∈Sn−1

n−1∑
i=0

qi+invσ =
∑

π∈Sn−1

qinvσ
n−1∑
i=0

qi

By the inductive hypothesis, the first sum is [n − 1]q!. By definition, the second
term is 1 + q + q2 + ... + qn−1 = [n]q. So we end up with the desired expression
and the proof is complete.
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We can couch the theorem in the following terms: for a given symmetric group
Sn, we can keep track of a statistic called the inversion number. We can ask our-
selves what the frequency distribution of inversion numbers look like, i.e. the num-
ber of permutations in Sn with k inversions. We can convert this into a generating
function (which, of course, should have a finite number of terms). The q-factorial
function provides us quite neatly with this generating function.

3 The q-binomial coefficient
It might seem natural to ask whether this q-analogy extends from factorials to bino-
mial coefficients. Let’s see.

Definition (q-binomial coefficient): Defined exactly as you would expect (with
the caveat that if k = 0, you only get only get 1 if n = 0 as well; otherwise, you get
zero because you cannot pick nothing from something...).(

n

k

)
q

=
[n]q!

[n− k]q![k]q!

You might wonder whether this actually yields a polynomial rather than a rational
function. We can show it does the former when we show its inductive formula.

Theorem (Recursive formulae for q-binomial coefficient): Take n ≥ 0. We
have the following identities. (

0

k

)
q

= 1[k = 0]

(
n

k

)
q

= qk
(
n− 1

k

)
q

+

(
n− 1

k − 1

)
q(

n

k

)
q

=

(
n− 1

k

)
q

+ qn−k

(
n− 1

k − 1

)
q

Proof: All of these follow directly from the definitions. We will show the third
identity; the first and second are left as exercises.(

n

k

)
q

=
[n]q!

[k]q![n− k]q!
=

[n− 1]q!

[k]q![n− k]q!
[n]q

We claim that [n]q = [k]q + qk[n − k]q. We explain this as follows: the [k]q!
accounts for the first k terms, and the [n − k]q! accounts for the last n − k terms;
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the qk is needed to shift the terms correctly (the sum would need to start at qk rather
than 1). Thus, we have:

[n− 1]q!

[k]q![n− k]q!
([k]q + qk[n− k]q)

[n− 1]q!

[k − 1]q![n− k]q!
+qk

[n− 1]q!

[k]q![n− k − 1]q!
=

(
n

k

)
q

=

(
n− 1

k

)
q

+qn−k

(
n− 1

k − 1

)
q

We are now ready to prove the q-analogy to a very important theorem.

Figure 1: Illustration of the recursive formula, in terms of a Pascal’s Triangle.

Theorem (q-binomial theorem.): For any positive integer n,

(1 + qt)(1 + q2t) · · · (1 + qn−1t) =
n∑

k=0

(
n

k

)
q

q(
k
2)tk

Proof: Induct on n. Base case n = 0 is trivial. For the inductive step, apply the
formula for the q-binomial coefficient and simplify.

n∑
k=0

(
n

k

)
q

q(
k
2)tk =

n∑
k=0

(
n− 1

k

)
q

q(
k
2)tk + qn−k

n∑
k=0

(
n− 1

k − 1

)
q

q(
k
2)tk

If the first sum is denoted S and the second sum is denoted T , then it suffices
to show that T = qn−1tS. This is because, by the inductive hypothesis, S =
(1 + qt)(1 + q2t) · · · (1 + qn−2t), so S(1 + (qn−1t)) is precisely the desired term.

Let us show T = qk−1tS. This follows from the observation that:

qn−k

n∑
k=0

(
n− 1

k − 1

)
q

q(
k
2)tk = qn−1t

n∑
k=0

(
n− 1

k − 1

)
q

q(
k
2)−k+1tk−1

We have the basic identity
(
k
2

)
−k+1 =

(
k−1
2

)
. Thus, if do a simple substitution

in the sum with k′ = k − 1, then we have the sum becoming S and thus:

qn−k

n∑
k=0

(
n− 1

k − 1

)
q

q(
k
2)tk = qn−1tS

4



4 Examples
The q-binomial coefficient shows up in a lot of places. They help us count, for
instance, (1) vector spaces over finite fields, (2) the sizes of partitions contained
within a given Young’s Diagram, and (3) the area under a lattice path. We will
discuss (3) in more depth.

4.1 Lattice Paths
Recall that the number of paths from the origin to the point (m,n), using only
northerly and westerly steps, is given by

(
m+n
m

)
. We call these lattice paths.

For a given lattice path, we can ask ourselves about the area below it. We draw
pictures to visualize this. Let A(p) be the area associated with a given lattice path.

Theorem: Let P be the set of lattice paths from (0, 0) to (m,n).∑
p∈P

qA(p) =

(
m+ n

m

)
q

Proof: If we call the left hand size F (m,n), we should note F (0, n) = F (m, 0) =
0. For nontrivial F (m,n) we have a neat way of visualizing:

• If the last step was northerly, then the area of whatever path we end up with
was the same as the area we had with the path that ended at (m,n− 1).

• If the last step was easterly, then this path was a path to (m− 1, n) followed
by a step which contributed n to the area.

This leaves us with the recursion which, with these initial conditions, equates F (m,n)
with the q-binomial coefficient. Observe that the qn signifies how much area we add
to the paths from the second case,

F (m,n) = F (m,n− 1) + qnF (m− 1, n)

This works because we have the correspondence F (m,n) 7→
(
m+n
n

)
q
.

5 Curiosities
In case you are interested in other kinds of q-analogs, we present some below.

q-derivative: ( d

dx

)
q
f(x) =

f(qx)− f(x)

qx− x
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q-Pochhammer symbol:

(a; q)n =
n−1∏
k=0

(1− aqk)

q-Vandermonde convolution: This is the analogy to a usual formula involving
the binomial coefficients. Observe the discrete convolution that is occurring.(

m+ n

r

)
=

n∑
k=0

(
m

k

)(
n

r − k

)
With the q-analogues, we have:(

m+ n

r

)
q

=
n∑

k=0

(
m

k

)
q

(
n

r − k

)
q

qj(m−k+j)
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