The Duality of Trace and Determinant

Noah Bergam

August 15th, 2023

Noah, CC '25 [Columbia UMS Summer 2023](#page-25-0) August 15th, 2023 1/26

э

4 0 8

 299

Þ

Outline

4 0 8

- ← 冊 →

重

Tensors

The tensor product $V \otimes W$ consists of expressions of the form:

$$
v_1\otimes w_1+v_2\otimes w_2+...+v_n\otimes w_n
$$

This ⊗ is multi-linear, i.e. linear in each component.

$$
(\lambda_1v_1+v_2)\otimes w_1=\lambda_1(v_1\otimes w_1)+(v_2\otimes w_1) \qquad \qquad (1)
$$

4 D F

Þ

Contextualizing Tensors

- Cartesian Product $V \times W$: tuples of the underlying set.
- Direct Product $V \times W$: tuples as a vector space, coordinate-wise.
- Direct Sum $V \oplus W$: tuples with finitely many nonzero components.
- **Tensor Product** $V \otimes W$: tuples with multi-linearity
- Wedge Product $V \wedge V$: tuples with multi-linearity and anti-symmetry.

(Note: the difference between direct sum and direct product only emerges for infinite sums/products.)

(Note: you cannot wedge different vector spaces, since this would make anti-commutativity ill-defined.)

イロト イ押ト イヨト イヨト

Exterior Power

Definition (Exterior Power)

For a vector space V, the n-th exterior power of V, denoted $\Lambda^n V$, is spanned by elements of the following form for $v_1, ..., v_n \in V$.

 $v_1 \wedge ... \wedge v_n$

which obey the multi-linearity and anti-symmetry. For example:

$$
(\lambda v_1 + w) \wedge ... \wedge v_n = \lambda (v_1 \wedge ... \wedge v_n) + (w \wedge ... \wedge v_n)
$$

$$
v_1 \wedge v_2 \wedge ... \wedge v_n = -(v_2 \wedge v_1 \wedge ... \wedge v_n)
$$

4 D F

Notes on Exterior Product

Important Properties:

- \bigcirc (vanishing) $v \wedge v = 0$
- 2 (associativity) $(v \wedge w) \wedge x = v \wedge (w \wedge x)$
- **3** (untangling) $v_{σ(1)}$ \land ... \land $v_{σ(n)}$ = sgn($σ$)(v_1 \land ... \land v_n)

Warning: Not every element in $\Lambda^n V$ is *reducible* to a single wedge product (in general, it is a linear combination of such elements).

The k-linear extension

Definition

For $A\in \operatorname{\mathsf{End}}(V)$, the k-linear extension $\Lambda^N A^k:\Lambda^N V\mapsto \Lambda^N V$ defined as:

$$
\Lambda^m A^k \left(\bigwedge_{j=1}^m v_j \right) = \sum_{s} \bigwedge_{j=1}^m A^{s_j} v_j
$$
\nwhere

\n
$$
s \in \{0, 1\}^n \quad \sum_{j} s_j = 1
$$

 $\Lambda^N A^N$ means we apply A to each entry (one-dimensional). $\Lambda^N A^1$ means we apply A to only one entry (*n*-dimensional).

The k-linear extension (examples)

For $\Lambda^N A^k$ I am applying A to k entries of the wedge product.

$$
\Lambda^3 A^1(v_1 \wedge v_2 \wedge v_3) = Av_1 \wedge v_2 \wedge v_3 + v_1 \wedge Av_2 \wedge v_3 + v_1 \wedge v_2 \wedge Av_3
$$

If V is N-dimensional, then dim $(\Lambda^N A^k) = {N \choose k}$.

$$
\Lambda^3 A^2 (v_1 \wedge v_2 \wedge v_3) = A v_1 \wedge A v_2 \wedge v_3
$$

+ $A v_1 \wedge v_2 \wedge A v_3$
+ $v_1 \wedge A v_2 \wedge A v_3$

4 D F

Determinant and Trace

Definition

The **determinant** of $A \in End(V)$ is the number by which any nonzero tensor $\omega \in \Lambda^N V$ is multiplied when $\Lambda^N A^N : \Lambda^N V \mapsto \Lambda^N V$ acts on it.

$$
(\Lambda^N A^N)\omega = (\det A)\omega
$$

Definition

The trace of $A \in End(V)$ is the number by which any nonzero tensor $\omega \in \Lambda^N V$ is multiplied when $\Lambda^N A^1 : \Lambda^N \mapsto \Lambda^N$ acts on it.

$$
(\Lambda^N A^1)\omega = (\text{tr } A)\omega
$$

Note: For dim(V) = N, $\Lambda^N V$ is one-dimensional. $\Lambda^1 V$ is *n*-dimensional.

イロト イ押 トイヨ トイヨ トー

Illustration of wedge-based determinant

$$
\Lambda^n A^n \omega = \Lambda^n A^n (v_1 \wedge \ldots \wedge v_n) = (Av_1 \wedge \ldots \wedge Av_n)
$$

\n
$$
= \Big(\sum_{j_1=1}^n A_{j_1,1} v_{j_1} \wedge \ldots \wedge \sum_{j_1=1}^n A_{j_n,n} v_{j_n} \Big)
$$

\n
$$
= \sum_{j_1=1}^n \ldots \sum_{j_n=1}^n \Big(A_{j_1,1} v_{j_1} \wedge \ldots \wedge A_{j_n,n} v_{j_n} \Big)
$$

\n
$$
= \sum_{j_1=1}^n \ldots \sum_{j_n=1}^n (A_{j_1,1} \cdots A_{j_n,n}) \Big(v_{j_1} \wedge \ldots \wedge v_{j_n} \Big)
$$

\n
$$
= \sum_{\sigma \in S_n} sgn(\sigma) \prod_{j=1}^n A_{j,\sigma(j)} (v_1 \wedge \ldots \wedge v_n) = det(A) \omega \quad \Box
$$

4 D F

Э× э

Illustration of wedge-based trace

$$
\Lambda^n A \omega = \Lambda^n A (v_1 \wedge ... \wedge v_n) = \sum_{i=1}^n v_1 \wedge ... \wedge (A v_i) \wedge ... \wedge v_n
$$

$$
=\sum_{i=1}^n\sum_{j_1=1}^n A_{j_i,i}(v_1\wedge...\wedge v_{j_i}\wedge...\wedge v_n)
$$

This is zero unless $v_i = i$. This eliminates the second sum and recovers the usual formula.

$$
=\sum_{i=1}^n A_{ii}(v_1\wedge...\wedge v_n)=\mathrm{tr}(A)\omega
$$

4 0 8

Þ

Theorems

Theorem (Liouville's Formula)

Let $A \in$ End(V).

$$
\det(\exp(A))=\exp(tr(A))
$$

where $\exp(A) = 1 + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^2 + ...$ denotes the matrix exponential. More generally, $det(exp(t \cdot A(t))) = exp(t \cdot tr(A(t)))$, where t is a formal variable and $A(t)$ is an operator-valued formal power series.

Theorem (Jacobi's Formula)

For F(t) an operator-valued formal power series such that $F^{-1}(t)$ exists:

$$
\partial_t \det(F(t)) = (\det F(t)) \ tr(F^{-1}(t) \cdot \partial_t F(t))
$$

◂**◻▸ ◂◚▸**

Context and Game Plan

An operator-valued formal power series is just a function $F(t) = 1 + F_1 t + F_2 t^2 + ...$ where the coefficients $F_i \in End(V)$. This is more flexible than just talking about linear operators.

The idea is to represent both $det(exp(A(t)))$ and $exp(tr(A(t)))$ as a (formal) power series in t satisfying some differential equation.

- First we establish some theory on how to solve differential equations for formal power series.
- Then we will guess a suitable differential equation that will enable us to prove the identity.

イロト イ母ト イヨト イヨト

Characterization of $exp(tA)$

Lemma

The operator-valued function $F(t) = \exp(tA)$ is the unique solution to the following differential equation.

$$
\partial_t F(t) = F(t)A \qquad F(0) = 1_V
$$

4 D F

э

Proof of Characterization of $exp(tA)$

Lemma

For $A \in End(V)$. the operator-valued function $F(t) = \exp(tA)$ is the unique solution to the following differential equation.

$$
\partial_t F(t) = F(t)A \qquad F(0) = 1_V
$$

Proof.

Since $F(0)=1$, we know $F(t)=1+F_1t+F_2t^2+...$ Note $F'(0) = A = F_1 A$, $F''(0) = A^2 = 2F_2$, $F'''(0) = A^3 = 6F_2$, etc. Matching coefficients, we find: $F(t) = 1 + At + \frac{1}{2!}A^2t^2 + \frac{1}{3!}A^3t^2 + ... = \exp(tA).$

イロト イ押 トイヨ トイヨ トー

G.

Leibniz Rule for Power Series

Lemma

If $\phi(t)$ and $\psi(t)$ are power series in t with coefficients from $\Lambda^m V$ and $\Lambda^n V$ respectively, then the Leibniz rule holds, i.e.

$$
\partial_t(\phi \wedge \psi) = (\partial_t \phi) \wedge \psi + \phi \wedge (\partial_t \phi)
$$

4 D F

э

Proof of Leibniz Rule for Power Series

Lemma

If $\phi(t)$ and $\psi(t)$ are power series in t with coefficients from $\Lambda^m V$ and $\Lambda^n V$ respectively, then the Leibniz rule holds, i.e.

$$
\partial_t(\phi \wedge \psi) = (\partial_t \phi) \wedge \psi + \phi \wedge (\partial_t \phi)
$$

Proof.

Due to linearity of derivative and the fact that power series can be differentiated term by term, just check for $\phi=t^2\omega_1$ and $\psi=t^b\omega_2.$

$$
\partial_t(\phi \wedge \psi) = (a+b)t^{a+b-1}\omega_1 \wedge \omega_2
$$

$$
(\partial_t \phi) \wedge \psi + \phi \wedge (\partial_t \psi) = at^{a-1} \omega_1 \wedge t^b \omega_2 + t^a \omega_1 \wedge bt^{b-1} \omega_2
$$

Inverse

Lemma

The inverse of a formal power series $\phi(t)$ exists iff $\phi(0) \neq 0$.

Proof.

If $\phi(0) \neq 0$ then $\phi(t) = \phi(0) + t\psi(t)$ with ψ another power series. Then we can construct the inverse explicitly:

$$
\frac{1}{\phi(t)} = \frac{1}{\phi(0)} \frac{1}{(1 + \frac{t\psi(t)}{\phi(0)})} = \sum_{n=0}^{\infty} (-1)^n \phi(0)^{-n-1} (t\psi(t))^n
$$

This is because $1 = (1 + x)(1 - x + x^2 - x^3 + ...)$ for formal x.

э

 QQ

イロト イ母 トイヨ トイヨ トー

Jacobi

Lemma (Jacobi's Formula)

If $A(t)$ is an invertible operator-valued formal power series:

$$
\partial_t \det(A(t)) = \det(A) tr(A^{-1} \partial_t A)
$$

Note that the determinant and trace of $A(t)$ still makes sense because $A(t)$ is still an operator (just expressed as an infinite sum of operators).

Note: this formula can be written in a lot of different ways (Cf. Wikipedia).

 \leftarrow \Box

Jacobi

Lemma (Jacobi's Formula)

If A is an invertible operator-valued formal power series:

$$
\partial_t \det(A(t)) = \det(A) tr(A^{-1} \partial_t A)
$$

Proof.

Apply definition of determinant and the Leibniz rule established earlier.

$$
(\partial_t \det(A(t)))(\omega) = \partial_t (\det(A(t))\omega) = \partial_t (A v_1 \wedge ... \wedge A v_n)
$$

$$
= \sum_{k=1}^n Av_1 \wedge ... \wedge (\partial_t A)v_k \wedge ... \wedge Av_n
$$

(We want to write this as a trace.)

Jacobi Proof, Continued

Proof, continued.

Invoke the algebraic complement of $A(t)$, given by $\det(A(t)) \cdot A^{-1}(t)$ for invertible A (there is a general formula as well). Think of it like the adjoint.

$$
\sum_{k=1}^n Av_1 \wedge ... \wedge (\partial_t A)v_k \wedge ... \wedge Av_n = \sum_{k=1}^n v_1 \wedge ... \wedge (\tilde{A}\partial_t Av_k) \wedge ... \wedge v_n
$$

Note that the right-hand side is a trace: $\Lambda^n(\tilde{A}\partial_t A)^1 ({\sf v}_1\wedge...\wedge {\sf v}_n).$ This gives us the desired identity.

$$
\partial_t \det(A) = \text{tr}(\tilde A \partial_t A) = \text{tr}(\det(A) A^{-1} \partial_t A) = \det(A) \text{tr}(A^{-1} \partial_t A)
$$

ヨメ メヨメ

← ロ → → ← 何 →

э

Proof of Liouville

Let $F(t) = \exp(tA)$. $F(0) = 1$ so it is invertible, so we can apply Jacobi's:

$$
\partial_t \det(F(t)) = \det(F(t)) \cdot \text{tr}(F^{-1}\partial_t F)
$$

By the characterization of $F(t) = \exp(tA)$, we have $F^{-1}(\partial_t F) = F^{-1}(FA) = (F^{-1}F)A = A.$

$$
\partial_t \det(F(t)) = \det(F(t)) \cdot \text{tr}(A)
$$

Let $f(t) = \det(F(t)) \qquad \partial_t f(t) = f(t) \cdot \text{tr}(A)$

By the characterization, $f(t) = \exp(t \cdot \text{tr}(A))$. Hence:

$$
\det(\exp(tA))=\exp(t\cdot \text{tr}(A))\quad \Box
$$

イロト イ押 トイヨ トイヨ トー

э

Related Identities

Generalization of Liouville's: For $p \le n = \dim(V)$ with $A \in End(V)$. Liouville's is the special case where $p = n$

$$
\Lambda^p(\exp(tA))^p=\exp(t(\Lambda^pA^1))
$$

Sylvester's Theorem: For $A: V \mapsto W$, $B: W \mapsto V$, we have:

$$
\det(I_V + BA) = \det(I_W + AB)
$$

4 D F

∍

An intuitive taste of Jacobi

A nice vignette in Arnold's ODE textbook. **Observation:** As $\epsilon \to 0$ we have:

$$
\det(I+\epsilon A)=1+\epsilon\mathrm{tr}(A)+O(\epsilon^2)
$$

We can view this easily via the eigenvalues of A, call them $\lambda_1, ..., \lambda_n$.

$$
\det(I+\epsilon A)=\prod_{i=1}^n(1+\epsilon\lambda_i)
$$

Note that the zeroth order term is 1. The second term is (by Vieta) $\epsilon(\sum_{i=1}^n\lambda_i)=\epsilon\mathrm{tr}(A).$ Rest of the terms are order $\epsilon^2.$

Conclusion

There are a number of ways to view the duality of trace and determinant.

- Definitions and constructions.
- Theorems and analytical connections.

Careful understanding of the basic constructions (wedge product, power series, differential equation for exp, etc) was key.

4 0 8

Linear Algebra via Exterior Products. Sergei Winitzki. Section 4.5. Ordinary Differential Equations. VI Arnold. Section 16.

4 0 F ∢母 э