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Outline of the Talk

1. Introduction to t-SNE
2. Introduction to Spectral Clustering
3. Cai and Ma (2022): the connection



Dimensionality Reduction

High dimensional data is everywhere

e Images (#pixels) Pt
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e Language (#vocabulary) e, W
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e Single-cell transcriptomics (#genes)
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structure (e.g. a manifold).

Problem: Find a map into a lower-dimensional
space, which preserves “information/structure”



The t-SNE approach (van der Maaten 2007)

1. Start with X = {xq, ..., x,} C RY.

2. Randomly initialize the corresponding low-dimensional representations
("embeddings") Y = {y1, ..., ya} C R2.

3. lteratively update the ) embeddings, to match the local structure of X'.




How do we characterize “structure”?

Affinity matrix P associated with X.

For ¢ # j, define
exp(—|[xi — x;/*/207) o, — 2t P
Y 2N e
Zk;éi exp(—||x; — xx ||2/20'?) Gaussian distribution

Djli =

Affinity matrix Q associated with Y.
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Cost Function and Updates

P and Q are discrete probability distributions

We compute their “distance”

We update the embeddings according to gradient descent.

dKL P”Q) Z (Qp,l qu) Yi — ) (alphais the “early

exaggeration” parameter.
ady;
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“Dynamical Systems Interpretation”
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OVERVIEW OF T-SNE

X = {o;05% 1 C R Y={vi,.,¥n} c R2.
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Spectral Dimensionality Reduction

1. Start with X = {x1,...,x,} € Mgxn.

2. Construct an adjacency matrix Ay corresponding to some kind
"similarity graph” on X (like k-nearest neighbors, or affinity matrix)

3. Compute the eigenvectors of L(Ax), the graph Laplacian.

4. Construct Y = {y1,..., ¥n} € Mixn, where the rows are the k lowest
eigenvectors.



Example

@ e.g. 2-nearest neighbors
o X ={(1,3),(1,1),(2,0),(—2,-2),(—3,-3),(-5,0)}:
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000101 “Block matrix,”

\0 6 0|1 1 0 ) Isrltrﬂlﬁetll’jlrvee of cluster

We want to use spectral decomposition to detect clusters of points.



The Graph Laplacian

The heart of spectral graph theory; many nice properties
- Analogous to the Laplace operator in calct v2s:
Operates on a graph G.

- The adjacency matrix records whether
- The degree matrix (diagonal) records how many edges on a given node

Formula: L=D-A



Cai and Ma (2022): the spectral regime

1. Rewrite the t-SNE gradient update in

matrix form.

2. Flnd.cc?ndltlons for when the gp@ate 1. yi =AYy
matrix is roughly constant. This is a 2. Ax = A. Therefore y, = AXyj.
power iteration. 3. limg—o0 A¥yp?

3. Show that the power iteration
converges.



“Adjacency Matrix”

Cai and Ma (2022) ®

(k) P qJ

Sij (a) = ®
1+ g™ - 7|12
Rewrite the t-SNE update.

yW =y® 4 h 3 G —y#sP(a), i=1,..,n,

1<j<n,j#i

Look at the row space of the embedding.

y ) — (1, — hLS®yP, £=1,2,

Graph
Laplacian!



The path to POWER ITERATIONS
y ) = (1, — ALSP)yP, =12,
Yy 1, — hL(eP - H)ylY, £=1,2,

g & L, — hL(aP — H,)]Fy .

H, =

1) Original.

2) Roughly
constant
adjacency matrix

3) Power
iterations
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Question: Where do these power iterations lead?

Answer: Power iterations lead to the null space of L(P)!
Let R be the dimension of the null space of L(P)

Let U be a n by R matrix, whose columns are the orthogonal basis for the null
space of L(P).

y§k) ~ UUTyg)), ¢ e [2].



The Laplacian null-space records clusters...

Consider well-clustered data (P effectively a block matrix!)

Proposition 6 (Laplacian null space) Suppose A € R™*" is symmetric and well con-
ditioned. Then the smallest eigenvalue of the Laplacian L(A) is 0 and has multiplicity R,
and the associated eigen subspace is spanned by {01, ...,0r} where for each r € {1, ..., R},

)

1/\/n, if the j-th node belongs to the r-th component
[er]j = :
0 otherwise

and n, is the number of nodes in the r-th connected component. In particular, up to possible
permutation of coordinates, any vector u in the null space of L(A) can be expressed as

1y, 0 0
0 1 0
aq as ng aRr
u=— i 4+ — . + ...+ . 5 17
VAL : /12 : VIR : ( )
0 0 1op

for some ay,...,ar € R.



Hence, under certain conditions, we know exactly where the
embeddings are going...

Theorem 7 (Implicit clustering and early stopping) Suppose the similarity P and
the tuning parameters (o, h, k) satisfy (T1.D) and (T2.D), and the initialization satisfies
(I1) and (I2). Then there exists some permutation matriz O € R™™ such that, for £ € [2],

(k) Oz
lim Iy = ell =0, (18)
CORC N1 P
where
Zy = (\zfla 23) ZEIJ)?Z% ooy zf%a "')gER, ooy Zﬁ@)—r & Rn7 (19)
ny na nr

and zg, = Bjyg))/\/n_r for r € [R].



Conclusion

t-SNE is powerful but not very well-understood
Spectral clustering is well-understood

Cai and Ma show a deep connection between t-SNE and spectral clustering.

Question (Linderman): Is t-SNE just spectral clustering is disguise? It seems to
perform better, so there should be more to this story...
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Problem with SNE: " crowding problem”

SNE suffers from the " crowding problem”: The area of the 2D map that is
available to accommodate moderately distant data points will not be large
enough compared with the area available to accommodate nearby data
points.
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Unified Framework of Linear Dimensionality Reduction

Discussion

We can put most linear dimensionality reduction algorithms in a unified framework. Essentially,
they are all special cases of Kernel-PCA.

e PCA: K = XT X (Linear Kernel).
e (Classical-MDS: K = _71H DFuclidean [T where H is the centering matrix.
e Isomap: K = 5t HDGeodesicpy,

e LLE: once W is learned, K = M~! or K = (Apazl — M), where M = (I — W)(I — W)T,
(Difference is in the scale of coordinate of the embedding. K = A1/2V).

e LE: K = L' or K = (AnazI — L) and the result is also off in the scale of coordinate of the
embedding as LLE.



