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Outline of the Talk

1. Introduction to t-SNE
2. Introduction to Spectral Clustering
3. Cai and Ma (2022): the connection



Dimensionality Reduction

High dimensional data is everywhere

● Images (#pixels)
● Language (#vocabulary)
● Single-cell transcriptomics (#genes)

Oftentimes, it has low-dimensional intrinsic 
structure (e.g. a manifold).

Problem: Find a map into a lower-dimensional 
space, which preserves “information/structure”



The t-SNE approach (van der Maaten 2007)



How do we characterize “structure”?

Affinity matrix P associated with X.

Affinity matrix Q associated with Y.

Gaussian distribution

Cauchy (Student-T) 
distribution



Cost Function and Updates

P and Q are discrete probability distributions

We compute their “distance”

We update the embeddings according to gradient descent.

(alpha is the “early 
exaggeration” parameter. 
Helps experimentally.)



“Dynamical Systems Interpretation”
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OVERVIEW OF T-SNE



Spectral Dimensionality Reduction



Example

“Block matrix,” 
indicative of cluster 
structure



The Graph Laplacian

The heart of spectral graph theory; many nice properties

- Analogous to the Laplace operator in calculus:

Operates on a graph G.

- The adjacency matrix records whether 
- The degree matrix (diagonal) records how many edges on a given node

Formula:  



Cai and Ma (2022): the spectral regime

1. Rewrite the t-SNE gradient update in 
matrix form. 

2. Find conditions for when the update 
matrix is roughly constant. This is a 
power iteration.

3. Show that the power iteration 
converges.



Cai and Ma (2022)

Rewrite the t-SNE update.

Look at the row space of the embedding.

“Adjacency Matrix”

Graph 
Laplacian!



The path to POWER ITERATIONS

1) Original.

2) Roughly 
constant 
adjacency matrix

3) Power 
iterations



Question: Where do these power iterations lead?

Answer: Power iterations lead to the null space of L(P)!

Let R be the dimension of the null space of L(P)

Let U be a n by R matrix, whose columns are the orthogonal basis for the null 
space of L(P).



The Laplacian null-space records clusters…

Consider well-clustered data (P effectively a block matrix!)



Hence, under certain conditions, we know exactly where the 
embeddings are going…



Conclusion

t-SNE is powerful but not very well-understood

Spectral clustering is well-understood

Cai and Ma show a deep connection between t-SNE and spectral clustering.

Question (Linderman): Is t-SNE just spectral clustering is disguise? It seems to 
perform better, so there should be more to this story…
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Unified Framework of Linear Dimensionality Reduction


